
HYDRAN-XR
Command Reference
Hydrodynamic Response Analysis

with
Integrated Structural Finite Element Analysis

Version 24.0

NumSoft Technologies
Copyright © 2016-2024

All rights reserved.

Page of 1 186

1. Index of Commands

The following listing of commands is available on-line via the commands index hydrodynamics,
index general, index database, index matrix, index functions, index
fe_commands, index_fe_elements, and index misc. All categories are printed by the single
command index.

1.1. Hydrodynamic Commands

hyd_analysis added mass, hydrodynamic damping, exciting forces
hyd_analysis_response wave-induced hydroelastic response
hyd_analysis_response_drag wave-induced hydroelastic response
hyd_analysis_response_P external force hydroelastic response
hyd_assign_mooring assign mooring stiffness to a body
hyd_body_check check body data
hyd_close_files close HYDRAN-XR output files
hyd_convert_fea_mesh convert FEA mesh to hydrodynamic panel mesh
hyd_coordaxs specify coordinate axes
hyd_coord_trans transform input coordinates to inertial coordinates
hyd_export_graphics export hydro. panel mesh to graphics program
hyd_export_graphics_th export time history motion to graphics program
hyd_flex_modes input flexible modes
hyd_genmodes transform to generalized coordinates
hyd_irregular short-term extreme response
hyd_modal_pressure print exciting and modal pressures
hyd_mooring_line input mooring line data
phyd_mooring_line print mooring line data
hyd_mooring_stiffness input mooring stiffness
phyd_mooring_stiffness print mooring stiffness
hyd_nodes input nodal coordinates
phyd_nodes print nodal coordinates
hyd_node_gen node generation
hyd_node_tolerance check nodes for still water and symmetry planes
hyd_panel define 4-node (or 3-node) panel elements
phyd_panel print panel elements
hyd_panel_rmap create reverse mapping of panel numbers
hyd_parameters input global control parameters
hyd_postresponse obtain some post-processed responses
hyd_postresponse_P obtain some post-processed responses
hyd_rigid_modes generate rigid body modes
hyd_rmass input mass matrix for user modes
hyd_surf_elevation determine the "free" surface elevation
hyd_surf_nodes input surface nodal coordinates
phyd_surf_nodes print surface nodal coordinates
hyd_surf_node_gen surface node generation
hyd_surf_node_tolerance check surface nodes
hyd_surf_panel define 4-node (or 3-node) surface elements
phyd_surf_panel print surface elements
hyd_tf calculate transfer functions
hyd_velocity calculate fluid velocity at user-specified points
hyd_velocity_nodes define velocity point coordinates
phyd_velocity_nodes print coordinates
hyd_velocity_node_gen generate velocity point coordinates
hyd_velocity_node_tolerance check velocity nodes
hyd_wave input wave frequencies and incidence angles

Page of 2 186

hyd_wave_dispersion solve for wave length, wave number
hyd_wave_spectra input wave spectra
phyd_wave_spectra print wave spectra
hyd_wet estimate "wet" natural frequencies

1.2. General Commands

break_loop break do/while loop
date prints the current date and time
do do loop
filein read commands from file
flush flush the buffer for a file
help on-line help
if conditional if
index index of commands by category
logfile turn log file on/off
login read commands from a log file
name? echo current project name
new_project start a new project (also newproj or newprob)
palias print command aliases
quit quit MANOA
read read an array from file
rename_file rename a file
return return from batch mode
rm_file remove a file
savequit save database and quit
system_command execute a system command
time returns the system seconds
while conditional while
write write an array to file

1.3. Database Commands

clear initialize the database
ls or dir short listing of arrays in database
ll long listing of arrays in database
memory report memory used by database
mv or rename rename an array
readdb read a database from file
rm or del remove an array from the database
rm* or del* remove members from the database
save save the database to file

1.4. Matrix Commands

add matrix add
arpack eigenvalue solver
array3d_slice slice a 3-D array
array3d_unslice insert a matrix into a 3-D array
cp copy
cpdg copy diagonal elements
diag_mult multiply by a diagonal matrix
dim_reduce reduce dimensions of a matrix
eigval eigenvalue solver
extract extract rows of a matrix

Page of 3 186

fft compute Fourier or inverse Fourier transform
fft_helper multiply transfer functions with Fourier coefficients
ftopro full to profile storage
gauss Gauss elimination
get_dim get dimensions of a matrix
ident create real identity matrix
identc create complex identity matrix
identi create integer identity matrix
input input a real matrix
inputc input a complex matrix
inputch input a character matrix
inputi input an integer array
input3d input a real 3-D array
input3dc input a complex 3-D array
inputi input an integer 3-D array
interpolate interpolate discrete data
invert invert a square matrix
jacobi jacobi eigenvalue solver
joinh join two matrices horizontally
joinv join two matrices vertically
max find the maximum in a matrix column
min find the minimum in a matrix column
mult matrix multiply
mult_col multiply columns of two matrices
mult_elem multiply elements of two matrices
norm matrix norm
pmult matrix multiply for profile storage
print print a matrix
printf print a matrix in F format
printi print a matrix in integer format
psolve profile equation solver
psolve16 profile equation solver for real*16
ptoful convert profile to full storage
ptosparse convert profile to sparse storage
put put matrix inside another
putdg put vector on diagonal of a matrix
scale scale an array
series create a 1d series of real data
series2d create a 2d series of real data
seti set a character string
seti set an integer scalar
seti set a real scalar
sort sort a matrix
sparse_matrix_clean remove sparse matrix storage
sparse_mult matrix multiply for sparse storage
split split a matrix based on columns
sub matrix subtraction
subcol subtract columns of two matrices
sumcol sum columns of a matrix
tmult multiply by transpose
to_complex convert to complex
to_complex2 convert to complex with two arguments
to_int convert to integer
to_real convert to real
to_real16 convert to real*16
to_vector convert to vector
trans matrix transpose
unsplit unsplit a matrix

Page of 4 186

unwrap unwrap the rows of a matrix
wrap wrap the rows of a matrix
xprint extended print
zero zero a real matrix
zeroc zero a complex matrix
zeroi zero an integer matrix

1.5. Mathematical Functions

abs absolute value of matrix elements
acos arccosine of matrix elements
asin arcsine of matrix elements
atan arctangent of matrix elements
bessel_j or bessel_y Bessel function of 1st/2nd kind of matrix elements
conjugate complex conjugate of matrix elements
cosine cosine of matrix elements
cosh hyperbolic cosine of matrix elements
epsilon returns a small value relative to 1
erf error function
erfc (see erf) complementary error function
erfc_scaled (see erf) scaled complementary error function
exp exponential of matrix elements
gamma gamma function of matrix elements
log natural log of matrix elements
log10 common log of matrix elements
pi creates a scalar with the value of pi
power power of matrix elements
sine sine of matrix elements
sinh hyperbolic sine of matrix elements
sqrt square root of matrix elements
tan tangent of matrix elements
tanh hyperbolic tangent of matrix elements

1.6. Finite Element Commands

bcid displacement boundary conditions
body_frc2d define 2D body forces
check_diag check diagonals of K for zero
conc_deck_loads pontoon bridge concentrated deck loads
consolidation carry out consolidation analysis
cp_tables input tables of drag coefficient Cp
current_velocity input current velocity
dampers nodal dampers
direct_th determines dynamic time history response
disp_cntl displacement control
distr_deck_loads pontoon bridge distributed deck loads
el_iso_matl elastic, isotropic material matrix
elem_alias print element aliases
elem_grp add/delete element group
elemXX2.7 input for element type XX
eq_direction generate earthquake direction vector
export_graphics export to graphics program
fem_error estimate finite element error
form_G form element matrices for smoothing constraint
form_c form global damping
form_k form global stiffness

Page of 5 186

form_m form global mass
form_lagrangeG form element matrices for Lagrange constraint
imposed_displ imposed nodal displacements
initial_conditions specify initial conditions for time history
load_summary print load summary
lsolve linear equation solver
mass nodal mass definition
mass_summary summary of total structural mass
merge_nodes merge coincident nodes
modal_th determines dynamic modal response
nodal_constraint impose nodal constraints
nodal_disp arrange displacements on node basis
nodal_pressure nodal pressure definition
nodef nodal load definition
nodes node definition
node_gen generate nodes
node_order orders nodes for equation numbering
node_str average nodal stresses
nsolve nonlinear equation solver
num_eqs number equations
pbcid print nodal restraints
pbody_frc2d print 2D body forces
pcurrentvelocity print current velocity
pdampers print nodal dampers
pdeck_loads print pontoon bridge deck loads
pdisp print displacements
pelemXX2.7 print data for element type XX
peqns print equation numbers
pimposed_displ print imposed nodal displacements
pmass print input nodal masses
pndisp print nodal displacements
pndisp_th print time history of nodal displacements
pnodef print input nodal loads
pnodes print nodes
presponse print element response
pstate print element state
response determine element response
rigid_modes generate rigid body modes
state determine element state
water_waves input water waves

1.7. Finite Elements

beam3d linear, 3-D beam element
biot1d234 1-D element for linear, elastic consolidation
biot2d3to9 2-D element for linear, elastic consolidation
cable elastic catenary cable
contact_spring nonlinear, contact spring
d1l234 1-D, linear, elastic element
d1l234v2 1-D, linear, elastic element, v.2
d2l3to9 2-D, linear elastic element
d2ltri 2-D, linear elastic triangular element
iFEM2D 2-D, 3 to 9 node element for nonlinear iFEM
interface quadrilateral (and triangular) interface element
isomin6 linear, triangular Mindlin plate
min3s Mindlin 3-D triangular, linear shell
min5s Mindlin 3-D quadrilateral, linear shell

Page of 6 186

min4t quadrilateral, linear, Mindlin shell
min6 linear, triangular Mindlin plate
nbeam2d large displacement, elastic 2D beam
pbridge elastic, 3-D pontoon bridge element
ntruss large displacement truss
smth1c 1-D cubic smoothing element
smth1l 1-D discrete least squares smoothing element
smth1q 1-D quadratic smoothing element
smth2l 2-D discrete least squares smoothing element
smth2q 2-D quadratic, triangular smoothing element
smthspr 2-D node SPR smoothing element
spring nonlinear, elastic spring
stiff2n linear elastic 2-node stiffness element
truss linear truss

1.8. Miscellaneous Commands

fortran_kind prints the number of bytes for standard types
gauss_int Gauss integration
gauss_pts Gauss integration points
poly evaluate a 1-D or 2-D polynomial
tri_intpts integration points for triangle
userf user-defined functions

Page of 7 186

2. Command Reference

2.1. Hydrodynamic Commands

hyd_analysis
 Command to determine the added mass, damping, and wave excitation forces

 Command Syntax
 hyd_analysis [#added_freqs=? -periods] [-no_pot] [-source]

 #added_freqs is the number of wave frequencies to add to a previous
 analysis. The frequencies, in radians/sec, are to be listed on the
 input line immediately following this command. If -period is specified,
 the input values are interpreted to be wave periods. The frequencies
 will be inserted in numerical sequence into the frequencies previously
 specified by the hyd_wave command.

 If -no_pot is specified, the velocity potentials are not saved.
 WARNING: Although this option saves memory in the database, specifying
 -no_pot means that the potentials and/or pressures cannot be calculated
 in the hyd_analysis_response command.

 If -source is specified, the radiation source strengths are written to
 file *.rad by the Fortran statement

 write(f_rad)omega, strength

 and the diffraction source strengths are written to file *.dif by the
 Fortran statement

 write(f_dif)omega, angle, strength

 For the latter, the outer loop is on the wave frequency. The * in the
 above file names represents the project name. Contact NumSoft
 Technologies for more complete details regarding the information
 written to these files. Note that this option is not compatible at this
 time with the #added_freqs option.

 Some basic commands to carry out the hydrodynamic analysis can inlude:

 hyd_parameters
 hyd_coordaxs
 hyd_wave
 hyd_nodes
 hyd_coord_trans
 hyd_panel
 hyd_body_check
 hyd_rigid_modes
 hyd_rmass
 hyd_flex_modes
 hyd_genmodes
 hyd_analysis
 hyd_analysis_response
 hyd_postreponse

 Other commands can be used, as needed. In addition, the sequence of the
 commands as given above may be altered somewhat, but this command must

Page of 8 186

 precede the hyd_analysis_response command. The hyd_nodes command (and the
 hyd_coord_trans command, if it is required) must precede the hyd_panel
 command. Also, hyd_rigid_modes, if used, must be given before hyd_rmass and
 hyd_flex_modes. The hyd_flex_modes command is not needed to carry out the
 hydrodynamic analysis of single or multiple rigid bodies.

 The hydrodynamic analysis is based on linear potential theory. The Green
 function method with constant source strengths over each fluid panel is
 used to solve for the hydrodynamic variables. All calculations are carried
 out in double precision, except the Green functions are evaluated to single
 precision accuracy and the solutions of the equations to obtain the
 radiation and diffraction potentials are carried out in single precision
 arithmetic. The program is applicable for both infinite and finite water
 depths. Results from this command are the added mass, hydrodynamic damping,
 and generalized wave exciting forces.

 Single and double symmetry of the structure are exploited by using the
 composite source distribution method. For single symmetry, the panels
 should be generated corresponding to the y > 0 region. For double symmetry,
 the panels should be generated on the x > 0, y > 0 region of the body.

 The results are written to files, whose names are the project name with an
 extension. In addition to the basic *.out file, the following files may be
 created:

 *.pan --> panel data
 *.adm --> added mass coefficients
 *.adp --> hydrodynamic damping coefficients
 *.exf --> generalized wave excitation forces
 *.ot2 --> additional output
 *.pot --> velocity potentials at panel centers

 The following main arrays are created in the database:

 .hyd_modesym(nmode) -> symmetry code for modes
 .hyd_twnk(nfreq,2) -> wave period, wave number
 .hyd_un(nmode,npanel) -> generalized normals
 .hyd_xr(npanel,4) -> x coordinates of panels
 .hyd_yr(npanel,4) -> y coordinates of panels
 .hyd_zr(npanel,4) -> z coordinates of panels
 .hyd_xyzc(npanel,3) -> x,y,z coordinates of panel centers
 .hyd_panela(npanel) -> area of fluid panels
 .hyd_paneln(3,npanel) -> x,y,z components of panel normals
 .hyd_addm(nmode,nmode,nfreq) -> added mass coefficients
 .hyd_damp(nmode,nmode,nfreq) -> hydrodynamic damping coefficients
 .hyd_uz(nmode,npanel) -> vertical, z, displacements
 .hyd_fd(nmode,nbeta,nfreq) -> generalized diffraction forces
 .hyd_fi(nmode,nbeta,nfreq) -> generalized Froude-Krylov forces
 .hyd_rhs(nmode) -> RHS of generalized equations
 .hyd_dynk(nmode,nmode) -> dynamic stiffness (LHS)
 .hyd_gencor(nmode,nfreq,nbeta) -> generalized coordinates
 .hyd_potincm(npanel,nfreq,nbeta) -> incoming potentials
 .hyd_potdiff(npanel,nfreq,nbeta) -> diffraction potentials
 .hyd_potrad(npanel,nfreq,nmode) -> radiation potentials

 where nmode is the number of modes, npanel is the number of active panels,
 nfreq is the number of wave frequencies, and nbeta is the number of wave
 angles. These quantities are specified by the hyd_parameters and hyd_panel

Page of 9 186

 commands. Additional, temporary, arrays are also created and deleted. They
 all begin with either ".hyd_" or "$". To avoid a collision in array names,
 the user should not create any other array with these prefixes.

 See Also
 hyd_analysis_response hyd_panel hyd_parameters

Page of 10 186

hyd_analysis_response
 Command to determine the wave-induced response

 Command Syntax
 hyd_analysis_response [-residual] [symmetrize=on|off]

 This command solves the equations of motion to determine the
 generalized response based on the added mass, damping, and exciting
 forces calculated by the hyd_analysis command, which must precede this
 command.

 If -residual is specified, the residual error in the solution of the
 equations of motion is calculated. The maximum norm of the error is
 reported.

 If symmetrize=on, the added mass and hydrodynamic damping matrices are
 symmetrized by averaging the corresponding off-diagonal terms. If
 symmetrize=off, no averaging is done (default). Theoretically, these
 matrices should be symmetric. However, because of discretization
 errors, some corresponding terms may not be symmetric. The unsymmetry
 reduces as the mesh is refined.

 This command can be executed any number of times, for example, to evaluate
 changing the moments of inertia of a body. The hyd_analysis command does
 not need to be repeated as long as the added mass, hydrodynamic damping,
 and exciting forces are not affected. Before this command, the structural
 mass matrix must be defined as a database member and named hyd_mstr. For
 single or multiple rigid bodies, this matrix is created easily with the
 hyd_rmass command. If a viscous structural damping matrix (hyd_cstr) and a
 structural stiffness matrix (hyd_kstr) are not defined, they will be
 created and zeroed. (Constant structural hysteretic damping can be easily
 specified via the hyd_parameters command.) The dimensions of the structural
 matrices should be (nmode,nmode), where nmode is the number of modes. The
 hyd_flex_modes command is not needed to carry out the hydrodynamic analysis
 of single or multiple rigid bodies.

 The results are written to files, whose names are the project name with an
 extension. In addition to the basic *.out file, the following file will be
 created:

 *.cor --> generalized coordinates

 The following main arrays are created in the database:

 .hyd_rhs(nmode) -> RHS of generalized equations
 .hyd_dynk(nmode,nmode) -> dynamic stiffness (LHS)
 .hyd_gencor(nmode,nfreq,nbeta) -> generalized coordinates

 where nmode is the number of modes, nfreq is the number of wave
 frequencies, and nbeta is the number of wave angles. Additional, temporary,
 arrays are also created and deleted. They all begin with either ".hyd_" or
 "$". To avoid a collision in array names, the user should not create any
 other array with these prefixes.

 See Also
 hyd_analysis hyd_postresponse

Page of 11 186

hyd_analysis_response_drag
 Command to determine the wave-induced response including linearized
 quadratic drag

 Command Syntax
 hyd_analysis_response_drag arg1 arg2 beta=? conv=? [maxit=?]
 [wave=?] [symmetrize=on|off]

 This command solves the equations of motion to determine the
 generalized response based on the added mass, damping, and exciting
 forces calculated by the hyd_analysis command, which must precede this
 command. The command linearizes the Morison-type drag term as described
 below. Only one wave angle is considered.

 arg1 is the vector of diagonal terms in the "viscous" damping matrix
 that is used for the v^2 drag term. Note that this matrix is required
 to be diagonal, and hence only the diagonal values must be specified.
 The vector can be either real or complex.

 arg2 is the modal transformation matrix that is used to transform
 structural mass, damping and stiffness matrices from physical
 displacements to modal coordinates.

 beta is the integer wave angle number (not the wave angle) to be used
 (default=1)

 conv is the convergence criterion

 maxit is the maximum number of iterations (default=10)

 wave is the wave amplitude (default = 1)

 If symmetrize=on, the added mass and hydrodynamic damping matrices are
 symmetrized by averaging the corresponding off-diagonal terms. If
 symmetrize=off, no averaging is done (default). Theoretically, these
 matrices should be symmetric. However, because of discretization
 errors, some corresponding terms may not be symmetric. The unsymmetry
 reduces as the mesh is refined.

 The equations of motion are of the form

 [-w^2 M + i w (C + C_d) + K]q = P + P_m

 M and K are the total mass and stiffness matrices (structure + fluid),
 C is the structure plus radiation damping, C_d is the linearized drag
 term, P is the linearized exciting forces, and P_m are the exciting
 forces from the Morison-type drag term. q are the modal coordinates.
 This equation is identical to the equations solved by
 hyd_analysis_response, except for the terms C_d and P_m.

 C_d is obtained as follows. The diagonal damping matrix represented by
 arg1 is multiplied with (v-u) to obtain effective damping terms. v is
 the velocity at each structural degree-of-freedom based on the incoming
 wave, and u is the corresponding structural velocity from the previous
 iteration. The modified diagonal damping matrix is then transformed to
 modal coordinates using arg2, to obtain C_d.

 The modified damping matrix is multiplied by v to obtain the force in

Page of 12 186

 physical coordinates. The transformation matrix arg2 is used to
 transform this physical force vector to modal coordinates, giving P_m.

 The iteration continues until the maximum difference between
 displacements u from one iteration to the next is less than conv. If
 convergence is not reached in maxit iterations, a warning is issued but
 the unconverged results will be treated as converged and the solution
 will proceed.

 This command can be executed any number of times, for example, to evaluate
 multiple wave angles.

 The results are written to files, whose names are the project name with an
 extension. In addition to the basic *.out file, the following file will be
 created:

 *.cor --> generalized coordinates

 If they do not exist, the following main arrays are created in the
 database:

 .hyd_rhs(nmode) -> RHS of generalized equations
 .hyd_dynk(nmode,nmode) -> dynamic stiffness (LHS)
 .hyd_gencor(nmode,nfreq,nbeta) -> generalized coordinates

 where nmode is the number of modes, nfreq is the number of wave
 frequencies, and nbeta is the number of wave angles. Additional, temporary,
 arrays are also created and deleted. They all begin with either ".hyd_" or
 "$". To avoid a collision in array names, the user should not create any
 other array with these prefixes.

 The results from this command will be inserted in
 .hyd_gencor(nmode,nfreq,beta). Hence, all wave angles can be dealt with one
 at a time.

 See Also
 hyd_analysis hyd_postresponse

Page of 13 186

hyd_analysis_response_P
 Command to determine response to harmonic loading

 Command Syntax
 hyd_analysis_response_P [-eq] [-residual] [symmetrize=on|off]

 This command is very similar to hyd_analysis_response, which is used
 for wave-induced motion, whereas this command determines the response
 to predefined load pattern "P", contained in hyd_Peiwt(nmode). This
 command uses the added mass and hydrodynamic damping determined by the
 hyd_analysis command, which must precede this command. Only the
 radiation potentials (i.e., added masss and hydrodynamic damping) are
 considered. The excitation frequencies are specified by the hyd_wave
 command. Specify one wave angle (0 degrees, for example). The wave
 exciting forces are ignored. Although it is a bit inefficient to
 calculated wave exciting forces and then ignore them, the computational
 effort to obtain the wave exciting forces for one wave angle is
 relatively small.

 For earthquake ground motion, specify option -eq. In a usual earthquake
 analysis, the effective load vector Peiwt would be defined as the
 negative of the transpose of the generalized modes times the combined
 mass (structure mass Ms + added mass Mf) times an influence vector r
 (i.e., -psi^T * (Ms + Mf) * r). r specifies which displacement degrees
 of freedom move with the ground motion. However, the approach used here
 is to form the generalized added mass (Mf* = psi^T * Mf * psi)
 directly, and hence Mf is not available. It can be shown that the
 effective load vector can be approximated as

 -(I + Mf*) * psi^T * Ms * r

 if the generalized structural mass is the identity matrix; i.e., the
 modes are orthonormal with respect to the structure mass matrix.
 Therefore, when -eq is specificed, Peiwt should specified as psi^T * Ms
 * r, which will be multiplied internally by -(I + Mf*) for each
 frequency.

 For earthquake ground motion, there is an additional term to the
 effective load vector because the hydrodynamic damping depends on the
 total velocity (as compared to viscous structure damping, which is
 assumed to depend on the relative velocity). Again assuming that the
 generalized structure mass matrix is the identity matrix, the
 additional term for the effective load vector is

 + i/w Cf* * psi^T * Ms * r

 in which Cf* is the generalized hydrodynamic damping matrix.

 The above expressions for the effective load vector are based on the
 assumption that the influence vector r can be represented by the
 generalized modes. There is typically an error in this representation,
 which results from using a truncated subspace of generalized modes. The
 error is

 e = r - psi * p_r = r - psi * (Ms*)^-1 psi^T * Ms * r

 in which psi * p_r is the approximation of r by the generalized modes.
 The more modes one uses, the better this approximation should be.

Page of 14 186

 If -residual is specified, the residual error in the solution of the
 equations of motion is calculated. The maximum norm of the error is
 reported.

 If symmetrize=on, the added mass and hydrodynamic damping matrices are
 symmetrized by averaging the corresponding off-diagonal terms. If
 symmetrize=off, no averaging is done (default). Theoretically, these
 matrices should be symmetric. However, because of discretization
 errors, some corresponding terms may not be symmetric. The unsymmetry
 reduces as the mesh is refined.

 Some basic commands to carry out the analysis can include:

 hyd_parameters
 hyd_coordaxs
 hyd_wave
 hyd_nodes
 hyd_coord_trans
 hyd_panel
 hyd_body_check
 hyd_rigid_modes
 hyd_rmass
 hyd_flex_modes
 hyd_genmodes
 hyd_analysis
 hyd_analysis_response_P
 hyd_postresponse_P

 Note that this list does not include the creation of the modal forces in
 hyd_Peiwt(nmode).

 Other commands can be used, as needed. In addition, the sequence of the
 commands as given above may be altered somewhat. However, the hyd_analysis
 command must precede this command. Before this command, the structural mass
 matrix must be defined as a database member and named hyd_mstr. For single
 or multiple rigid bodies, this matrix is created easily with the hyd_rmass
 command. If a viscous structural damping matrix (hyd_cstr) and a structural
 stiffness matrix (hyd_kstr) are not defined, they will be created and
 zeroed. (Constant structural hysteretic damping can be easily specified via
 the hyd_parameters command.) The dimensions of the structural matrices
 should be (nmode,nmode), where nmode is the number of modes. The
 hyd_flex_modes command is not needed to carry out the hydrodynamic analysis
 of single or multiple rigid bodies.

 The results are written to files, whose names are the project name with an
 extension. In addition to the basic *.out file, the following file may be
 created:

 *.cor --> generalized coordinates

 See the commands hyd_analysis and hyd_analysis_response for more details.
 This command creates the following array in the database:

 .hyd_gencor(nmode,nfreq) -> generalized coordinates

 where nmode is the number of modes and nfreq is the number of frequencies.
 Additional, temporary, arrays are also created and deleted. They all begin

Page of 15 186

 with either ".hyd_" or "$". To avoid a collision in array names, the user
 should not create any other array with these prefixes.

 See Also
 hyd_analysis hyd_analysis_response hyd_postresponse_P

Page of 16 186

hyd_assign_mooring
 Assign mooring stiffnesses to bodies

 Command Syntax
 hyd_assign_mooring
 body=? mooring=? attach=?,?,? [theta=?] [T=?,?,?,?,?,?,?,?,?]

 body is the body number
 mooring is the stiffness number in .hyd_mooring_K
 attach is the x,y,z body coordinates of the attachment point on the
 body
 theta is the rotation in degrees about the z-axis (see below)
 T is a 3x3 transformation matrix in the order
 T(1,1),T(2,1),T(3,1),T(1,2),etc.

 Assigns ("attaches") a mooring stiffness to a body. The stiffness is
 assembled into the structural stiffness matrix hyd_kstr. If hyd_kstr does
 not exist or is not the proper size (nmode x nmode), it is created.

 Prior to adding the mooring stiffness to the structural stiffness, it is
 transformed to body coordinates. If the z-axis of the mooring stiffness
 coordinate system is parallel to the z-axis of the body coordinates, then
 the transformation is conveniently specified by theta, which is the
 z-rotation from the mooring x-axis to the body x-axis. Otherwise, the
 general 3x3 orthogonal coordinate transformation matrix, T, that
 transforms a vector from the body-fixed coordinate system to the mooring
 coordinate system may be input in column order.

 The mooring stiffness is used to determine the contribution of the
 mooring stiffness to the stiffness of the rigid body modes, as defined by
 the command hyd_rigid_modes. A mooring stiffness assigned, for example,
 to body 2 will have stiffness contributions to rigid body modes 7 - 12,
 the surge, sway, heave, roll, pitch, and yaw of body 2. The mooring
 stiffnesses must be assigned prior to any transformation of the modes to
 assumed modes, for example by the command hyd_genmodes. Also, any
 contribution to flexible modes is not included by this command. The user
 must define that contribution "manually" when specifying hyd_kstr.

 Every mooring line must be assigned explicitly. In particular, even for a
 symmetric mooring arrangement, each mooring line must be specified.

 See Also
 hyd_mooring_stiffness phyd_mooring_stiffness

Page of 17 186

hyd_body_check
 Perform some checks on the panel mesh

 Command Syntax
 hyd_body_check [body=?] [nodes=?,?] [panels=?,?] [body_sym=?]

 This command performs some checking of the body panel mesh. The arguments
 are only required in the case of multiple bodies, as defined by the
 parameter nbodies in the hyd_parameters command. In this case, the
 checking will be for the body number specified by the parameter body.
 Hence, one hyd_body_check command should be issued for each body for
 which a mesh is specified explicitly. The parameters nodes and panels
 specify the ranges of nodes and panels corresponding to body. For
 example, body=1 nodes=1,100 panels=1,81 mean that body 1 is represented
 by nodes 1 to 100 and panels 1 to 81. If symmetry in the command
 hyd_parameters is 1 or 2, then the parameter body_sym must be specified
 here. Its value must be: 0, if the mesh for the particular body is for
 the entire body; 1, if the mesh for the particular body is for 1/2 the
 body; and 2 if the mesh for the particular body is for 1/4 the body. The
 default for body_sym is the system symmetry specified by hyd_parameters.

 This command will check that the nodal coordinates are consistent with the
 symmetry specification. E.g., in the case of double symmetry, only the body
 in the (+x,+y) quadrant should be meshed. A warning will be issued for all
 nodes outside this quadrant.

 The volume of the mesh is reported, as calculated by the x, y, and z
 projections.

 The inertial coordinates of the center of buoyancy are calculated, based on
 the average of the three volume calculations.

Page of 18 186

hyd_close_files
 Close output files

Page of 19 186

hyd_convert_fea_mesh
 Convert FEA mesh to a hydrodynamic panel mesh

 Command Syntax
 hyd_convert_fea_mesh

 Import the fea mesh defined in HYDRAN-XR to a hydrodyanmic panel mesh.
 All FEA nodes are converted to "hydrodynamic" nodes.

 A hydrodynamic panel is created for each "wet" interface, min5s and min3s
 element. If the "positive" side of the finite element is wet, then the
 node order is reversed when defining the panel to make it consistent with
 the clockwise specification of nodes for the panels.

 The interface elements are converted first, followed by the min5s
 elements and then the min3s elements.

 This command means that a mesh does not have to be essentially redefined
 by the hyd_nodes and hyd_panel commands as long as a compatible finite
 element mesh has been defined.

 NOTE: the fea nodal coordinates must be specified in the inertial
 coordinate system to use this command.

 See Also
 hyd_nodes hyd_panel interface min3s min5s

Page of 20 186

hyd_coordaxs
 Define the coordinate systems for the hydrodynamic analysis.

 Command Syntax
 hyd_coordaxs [origin=?,?,?] [angles=?,?,?] [xb=?] [yb=?] [zb=?] &
 [theta=?] [zcg=?] [body=?]

 origin = (x,y,z) inertial coordinates of the origin of the input
 coordinate system
 angles = Euler (Bryant) angles that define the orientation of the
 input axes (degrees)
 xb = inertial x-coordinate of the origin of the body fixed
 coordinate system
 yb = inertial y-coordinate of the origin of the body fixed
 coordinate system
 zb = inertial z-coordinate of the origin of the body fixed
 coordinate system
 theta = angle in degrees between the inertial x-axis
 and the body-fixed x-axis (see below)
 zcg = body-fixed z-coordinate of the center of gravity
 body = the number of the body (see below)

 Although the default for all values is 0, this command is required.

 There is one inertial (global) coordinate system, and for each body there
 is an input coordinate system and a body-fixed coordinate system. The
 number of bodies is specified by the nbodies parameter in the
 hyd_parameters command. There is always at least one body. For a given
 body, the input coordinate system is used to specify the nodal coordinates
 for that body. The body-fixed coordinate system is used principally to
 define the rigid body modes for the body.

 The inertial coordinate system is located on the still-water plane, with
 the z-axis positive upward. The hydrodynamic calculations are carried out
 in the inertial coordinate system.

 The input coordinate system for a body is for input convenience. If the
 input and inertial coordinates systems are not the same, then after the
 nodes have been defined the user must transform the coordinates to the
 inertial system by the hyd_coord_trans command. The input coordinate system
 is defined relative to the inertial system by a shift (specified by the
 origin parameter) and a rotation (specified by the angles parameter). The
 orientation of the input coordinate system is obtained by sequentially
 imposing the rotations about first the input x-axis, then the rotated
 y-axis after 1 rotation, and finally the z-axis after 2 rotations.

 The origin of the body-fixed coordinate system is specified by the
 parameters xb, yb, and zb. The origin of the body axes need not be at the
 center of gravity of the body. However, it must be on the same vertical
 line as the CG of the body. The z-axis of the body fixed coordinate system
 is positive upward. The angle theta is the angle between the inertial
 x-axis and the body x-axis, measured from the inertial x-axis with
 counterclockwise positive. The inertial z-axis and the body z-axis are
 parallel.

 In the case of multiple bodies, as defined by nbodies in the command
 hyd_parameters, one hyd_coordaxs command must be input for each body, and
 the body number ranges from 1 to nbodies. In this case, the data specified

Page of 21 186

 here define the location and orientation of each body's input coordinates
 and body-fixed coordinates.

 In the case of symmetry, it is possible that a body is a complete
 reflection of another body that has been input. There are no nodes or
 panels that are input explicitly for such a body. This command is still
 required, however, to specify zcg. Although the values are not used for
 calculations, it is recommended that the origin of the body-fixed
 coordinate system be given as well so that the correct values will be
 printed in the project summary.

 The data are stored as:
 .hyd_coordaxs(11,nbodies) -> origin, angles, xb, yb, zb, theta, zcg

 See Also
 hyd_coord_trans hyd_nodes hyd_rmass

Page of 22 186

hyd_coord_trans
 Transform the nodal coordinates to the inertial coordinate system.

 Command Syntax
 hyd_coord_trans [body=?] [nodes=?,?]

 This command is required if the input coordinate system and the
 inertial coordinate system are not the same, as defined by the command
 hyd_coordaxs. For multiple bodies, as specified by the nbodies
 parameter in the hyd_parameters command, the parameters body and nodes
 are required. body is the body number and nodes define the range of
 nodes that correspond to that body. E.g., body=1 nodes=1,100 would mean
 that the coordinates for nodes 1 to 100 would be transformed using the
 coordinate transformation data for body 1 that was specified in the
 hyd_coordaxs command. For multiple bodies, the command must be issued
 as many times as necessary to transform the nodal coordinates to the
 inertial coordinate system.

 If this command is required, it must be issued after all the nodal
 coordinates have been defined (hyd_nodes) and before the panels are
 defined (hyd_panel).

 See Also
 hyd_coordaxs hyd_nodes hyd_panel

Page of 23 186

hyd_export_graphics
 Export hydrodynamic panel mesh to graphics program input file

 Command Syntax
 hyd_export_graphics -target [-modes T=?] &
 [-displ freq=? angle=? steps=?] &
 [-freesurface] [-wetonly] [file=filename]

 Export the hydrodynamic panel mesh to a graphic program's input text
 file.

 The graphics program is specified by the argument -target. Only the
 program Gmsh (http://www.geuz.org/gmsh/) is supported at this time.
 That is, the available option is -Gmsh.

 The default is to plot the undeformed mesh.

 If -modes is specified, the modes in .hyd_umx, .hyd_umy, and .hyd_umz
 (see hyd_rigid_modes and hyd_flex_modes command) are exported as
 displacements. T= is the name of a real vector of frequencies or
 periods, which is used for identification in the output file. The size
 of the vector is the number of modes. If a vector is not specified, one
 is created with the values 1,2, ...

 If -displ is specified, then a time sequence of displacements will be
 determined for a given wave frequency and wave angle. freq is the
 integer number of the wave frequency/period, angle is the integer
 number of the wave angle, and steps is the number of steps in the wave
 period for which the real displacements will be determined.

 If -freesurface is specified, then the free surface panels are exported
 as well. If modes is selected, then the free surface is flat. If
 deformed is selected, then the free surface elevation is also plotted.
 The displacement of the free surface is determined by the
 hyd_surf_elevation command.

 If -wetonly is specified, only "wet" panels are exported (panels with a
 W or V code); see command hyd_panel for information.

 If filename is specified, the results will be written to the file
 filename; othwerwise they will be written to the file project_name.msh
 (Gmsh).

Page of 24 186

hyd_export_graphics_th
 Export time history of motion response to graphics program input file

 Command Syntax
 hyd_export_graphics_th [-target] time xdisp ydisp zdisp &
 [surfzdisp] [t1=?] [t2=?] [step=?] &
 [file=filename]

 The graphics program is specified by the argument -target. Only Gmsh
 (http://www.geuz.org/gmsh/) is supported at this time. That is, the
 available option is -Gmsh, and it is the default.

 The time history response must have been previously calculated, e.g.,
 via a Fourier transform approach (see the command fft).

 time is a vector of N time steps
 xdisp is the (N,#nodes) matrix of x-displ. for the structure panels
 ydisp is the (N,#nodes) matrix of y-displ. for the structure panels
 zdisp is the (N,#nodes) matrix of z-displ. for the structure panels
 surfzdisp is the (N,#surfnodes) matrix of z-displ. for the surface
 panels

 If surfdisp is not given, then the surface displacements are not
 plotted.

 If t1 is given, export begins at time(t1) (default = 1).
 If t2 is given, export will stop at time(t2) (default = N).
 If step is given, every step time steps will be exported (default = 1).

 If filename is specified, the results will be written to the file
 filename; othwerwise they will be written to the file project_name.msh
 (Gmsh).

Page of 25 186

hyd_flex_modes
 Input the flexible structural modes for the hydroelastic analysis. There
 are two Command Syntax options.

 ---------- OPTION 1 ----------
 Command Syntax
 hyd_flex_modes arg

 ---------- OPTION 2 ----------
 hyd_flex_modes [-noread]
 mode_j x_z_sym y_z_sym
 i ux(i,j) uy(i,j) uz(i,j) thx(i,j) thy(i,j) thz(i,j)

 Option 1
 arg is the array in the database containing the structural mode shapes
 from the eigenvalue analysis; e.g., .phi (see command eigval). These
 correspond to the structural degrees-of-freedom, and the dimension is
 neq x #modes. For this option to work, the node numbers of the
 structural mesh and the node numbers of the panel mesh must be
 compatible. This can be ensured via the command hyd_convert_fea_mesh.
 Each column of arg is a mode shape. The first nmoder columns are
 skipped, and the next nmodef columns are processed. Hence, #modes must
 be greater than or equal to nmoder + nmodef. If nmoder > 0, then it is
 assumed that the arrays .hyd_umx, .hyd_umy, etc. (see hyd_rigid_modes
 for all the arrays expected) have been created and the first nmoder
 columns have been defined already (e.g., via the hyd_rigid_modes
 command or "manually"). This command will define the values for the
 nmodef modes. If symmetry is not 0, the values for the nmodef modes
 must be defined manually.

 Option 2
 mode_j = mode number
 x_z_sym = port-starboard symmetry code for mode_j
 0 -> port-starboard symmetric
 1 -> port-starboard anti-symmetric
 y_z_sym = fore-aft symmetry code for mode_j
 0 -> fore-aft symmetric
 1 -> fore-aft anti-symmetric
 ux,uy,uz(i,j) = translation of node i in the j-th mode
 thx,thy,thz(i,j)= rotation of node i in the j-th mode

 Ranges of the indices are: i = 1, nnode; j = nmoder+1, nmode.

 End input for each mode with a blank line. That is, the modes are
 separated by a blank line.

 The use of -noread is expected to be uncommon. If the flag -noread is
 present, the data are not read and only the one command line should be
 specified. In this case it is assumed that the seven arrays
 .hyd_modesym, .hyd_umx,...,.hyd_thz (see below) have been defined
 elsewhere and the data are in them for further processing. .hyd_kf,
 .hyd_un, and .hyd_uz will be created.

 The data are stored as:

 .hyd_umx(nnode,nmode) -> translational x displacements
 .hyd_umy(nnode,nmode) -> translational y displacements
 .hyd_umz(nnode,nmode) -> translational z displacements

Page of 26 186

 .hyd_thx(nnode,nmode) -> rotational x displacements
 .hyd_thy(nnode,nmode) -> rotational y displacements
 .hyd_thz(nnode,nmode) -> rotational z displacements

 The symmetry code for mode j is stored in .hyd_modesym(j). These codes are
 only used if the structural symmetry parameter on the hyd_parameters
 command is 1 or 2, indicating single (x-z) or double (x-z and y-z)
 structural symmetry, respectively. For single symmetry, the modal symmetry
 code is:

 1 -> symmetric
 2 -> antisymmetric

 For double symmetry, the modal symmetry code is:

 1 -> symmetric/antisymmetric
 2 -> antisymmetric/symmetric
 3 -> symmetric/symmetric
 4 -> antisymmetric/antisymmetric

 where, e.g., symmetric/antisymmetric means symmetric with respect to the
 x-z plane and antisymmetric with respect to the y-z plane.

 Note: The modal displacements are given in the inertial coordinate system.

 This command defines .hyd_un and .hyd_uz for the flexible modes and it
 forms an estimate - for the flexible modes - of the hydrostatic stiffness
 .hyd_kf based on the fluid term only. If a better hydrostatic stiffness
 matrix is available, it should replace the one created by this command
 (after the command finishes).

 See Also
 hyd_coordaxs hyd_coord_trans hyd_nodes hyd_rigid_modes

Page of 27 186

hyd_genmodes
 Transform matrices to generalized coordinates.

 Command Syntax
 hyd_genmodes [1=?/? 2=?/?]

 This command transforms the input modes to assumed modes, as explained
 below. There must be the same number of assumed modes as input modes
 (nmoder + nmodef from hyd_parameters command).

 This command is meant primarily for a system of multiple rigid bodies,
 in which the initial modes are specified to be the traditional surge,
 sway, heave, etc. of each body. This command allows the transformation
 to symmetric and antisymmetric modes. The array hyd_psi(nmode,nmode)
 must be defined prior to this command (e.g., by the input command).
 Array hyd_psi is defined such that

 {d} = [psi] {u}

 in which [psi] is hyd_psi, {d} is the displacement vector, and {u} is
 the vector of generalized displacements. For the cases of single and
 double symmetry of the system (as defined by the symmetry parameter on
 the hyd_parameters command), the symmetry/antisymmetry of the modes are
 specified by the parameters i=?/?, where i is the number of the mode (1
 to nmode) and ?/? is of the form S or A for single structural symmetry
 and S/S, S/A, A/S, and A/A for double structural symmetry. S and A
 refer to symmetric and antisymmetric, respectively. This input is used
 to define the vector .hyd_modesym. See the help on commands
 hyd_rigid_modes and hyd_flex_modes for more discussion on .hyd_modesym.

 The transformation is carried out by replacing the system matrices as
 indicated below:

 hyd_mstr <- [psi]^T * [hyd_mstr] * [psi]
 hyd_kstr <- [psi]^T * [hyd_kstr] * [psi]
 hyd_cstr <- [psi]^T * [hyd_cstr] * [psi]
 .hyd_kf <- [psi]^T * [.hyd_kf] * [psi]

 .hyd_umx <- [.hyd_umx] * [psi]
 .hyd_umy <- [.hyd_umy] * [psi]
 .hyd_umz <- [.hyd_umz] * [psi]
 .hyd_thx <- [.hyd_thx] * [psi]
 .hyd_thy <- [.hyd_thy] * [psi]
 .hyd_thz <- [.hyd_thz] * [psi]
 .hyd_un <- [psi]^T * [.hyd_un]
 .hyd_uz <- [psi]^T * [.hyd_uz]

 Note that the response given in the file *.cor will be the generalized
 coordinates. Usually, one will also want to define a "modal" matrix such
 that the response corresponding directly to the original modes will be
 determined by the command hyd_tf. If no other response components are
 desired, the modal matrix will be the same as hyd_psi. In this case, it is
 conveniently defined by the cp or mv commands.

 See Also
 hyd_flex_modes hyd_parameters hyd_rigid_modes hyd_tf

Page of 28 186

hyd_irregular
 Calculate short-term extreme response in irregular seas

 Command Syntax
 hyd_irregular arg1 arg2 [ext=extension] [file=filename]

 This command determines the short-term extreme response based on the
 transfer functions that have been determined with the hyd_tf command and
 the wave spectra specified with the hyd_wave_spectra command. arg1 is the
 name of the array with the transfer functions. The extreme responses are
 put in the array whose name is specified by arg2. The command creates this
 array with dimensions (nspectra,nbeta,ncomp), where nspectra and nbeta are
 the number of wave spectra and wave angles, respectively.

 Note: The extreme values are defined as 3.72 * square root of the variance
 of the response, i.e., 3.72 * square root of the area of the RAO^2 * wave
 spectrum.

 The extreme responses are written to a file. If extension is specified, the
 file name is project_name.extension. Otherwise, if filename is specified,
 the file will have the name specified by filename.

 See Also
 hyd_tf hyd_wave_spectra

Page of 29 186

hyd_modal_pressure
 Print modal pressures

 Command Syntax
 hyd_modal_pressure [digits=?]

 For each panel, prints the incoming + diffraction pressure and the
 pressure in each mode. The results are in file project_name.prs2. For
 this command to function, the potentials must have been saved in the
 hyd_analysis command.

 digits is the number of significant digits to print (default is 5).

 Note: The pressures determined by the hyd_analysis_response command are
 the total hydrodynamic pressures. This command prints the pressures in
 each mode, for a unit displacement of that mode. Therefore, for large
 problems, the file created may be quite large.

 See Also
 hyd_analysis hyd_analysis_postresponse

Page of 30 186

hyd_mooring_line
 Mooring line stiffness calculated from elastic catenary cable

 Command Syntax
 hyd_mooring_line m=? n=? [maxiter=?] [tol=?]
 m=seg_prop e=emodulus a=area w=wx,wy,wz (m records)
 n=nel anchor=x1,z1 end=x2,z2 [#segs=#segs] [tension=tenX,tenY,tenZ]
 seg=seg mat=seg_prop L=length (#segs records)

 m is the number of different mooring line properties
 n is the number of mooring stiffnesses
 maxiter is the max. # of iterations on the tension (default=30)
 tol is the relative tolerance on the end point position (default=1.e-5)

 For each set of mooring line segment properties:
 seg_prop is the segment property number
 emodulus is the modulus of elasticity
 area is the effective cross sectional area
 wx,wy,wz are the weight/unit length components in global coordinates

 For each element:
 nel is the stiffness number
 x1,z1 are the x and z coordinates of the anchor point
 x2,z2 are the x and z coordinates of the top point
 #segs is the number of different segments (default=1)
 tension is the initial estimate of the tension

 seg is the segment number
 seg_prop is the segment property number
 length is the unstretched segment length

 This command will calculate the 3x3 stiffness at the end (attachment)
 point for a mooring line. The stiffnesses are put in the array
 .hyd_mooring_K(3,3,n). The geometry of the mooring lines are defined in
 the plane of the line, and therefore only two coordinates are used to
 specify the anchor point and end point. The lines actual orientation in
 the global inertial coordinate system and their attachment to a
 particular body are specified by the command hyd_assign_mooring. The same
 stiffness can be assigned multiple times and to multiple bodies.
 Therefore, it is only necessary to define unique mooring lines once.

 The element is based on small strain elastic catenary theory. A shooting
 method is used to solve the two-point boundary value problem.
 Specifically, iteration on the tension at the anchor point is carried out
 until the distance between the calculated position of the end and the
 specified position of the end, divided by the element length, is less
 than or equal to the tolerance (tol). For information on the formulation,
 see H.R. Riggs and T. Leraand, "Efficient Static Analysis and Design of
 Flexible Risers," J. Off. Mech. Arctic Engrg., Vol. 113, pp. 235-240,
 1991, and H.R. Riggs and T. Leraand, "A Robust Element for Static
 Analysis of Marine Cables," Proc. Third International Offshore and Polar
 Engineering Conference, Singapore, Vol. 2, pp. 357-363, 1993. Note: the
 element described in those papers includes fluid drag; this element does
 not.

 See Also
 hyd_assign_mooring hyd_mooring_stiffness phyd_mooring_line

Page of 31 186

phyd_mooring_line
 command Syntax
 phyd_mooring_line
 Print mooring line data as specified by hyd_mooring_line

 See Also
 hyd_mooring_line

Page of 32 186

hyd_mooring_stiffness
 Specify mooring stiffnesses

 Command Syntax
 hyd_mooring_stiffness #=nstiff
 n=?
 (Input 3x3 stiffness matrix - 1 row/input record)

 Reads nstiff 3x3 mooring stiffness matrices. n is the mooring stiffness
 number, which must be in the range 1 to nstiff. Multiple stiffness
 matrices may not be separated by blank or comment lines.

 Each 3x3 matrix relates the displacements (u1,u2,u3) and forces of the
 mooring line at the point where it will be connected to a body. The
 forces and displacements are defined in a "mooring line coordinate
 system." A typical situation is: u1 is the horizontal displacement in
 the plane of the mooring line, u2 is the horizontal displacement normal
 to u1, and u3 is the vertical displacement. Only unique mooring
 stiffnesses must be defined.

 End input with a blank line.

 The command stores the stiffnesses in the array .hyd_mooring_K(3,3,nstiff).

 See Also
 hyd_assign_mooring hyd_mooring_line phyd_mooring_stiffness

Page of 33 186

phyd_mooring_stiffness
 Print mooring stiffnesses

 Command Syntax
 phyd_mooring_stiffnesses

 Print the mooring stiffnesses.

 See Also
 hyd_assign_mooring hyd_mooring_line phyd_mooring_stiffness

Page of 34 186

hyd_nodes
 Command Syntax
 hyd_nodes #=?
 n=node_no x=x-coor y=y-coor z=z-coor [lgen=lgen]

 Reads and generates nodal coordinates. The value specified by # is used
 to define storage requirements, and it must be greater than or equal to
 the maximum node number. If this value is missing or 0, it is assumed
 that existing nodes are being changed or added to, and the previous
 value applies. lgen is the node number increment for linear generation.
 Nodes are generated equally spaced along a straight line if two
 adjacent records do not have sequential node numbers and if lgen on the
 second line is not zero or blank. Nodes need not be input in sequence.

 End input with a blank line.

 This command must precede the hyd_panel command.

 The coordinates are stored in array .hyd_xyz(3,#), and the maximum
 possible node number (specified by #) is stored in .hyd_#nodes_tot.

 Active nodes are those that are defined explicitly either by this command
 or another command that creates nodes. The node number of the maximum
 defined node is stored in .hyd_#nodes. The character vector
 .hyd_node_active has an "A" for active nodes. Only active nodes can be
 used.

 The nodes command need not be executed as long as the coordinates, which
 could be generated by another program, are put in the array .hyd_xyz,
 .hyd_#nodes and .hyd_#nodes_tot are set, and .hyd_node_active is created.

 See Also
 hyd_coordaxs hyd_coord_trans hyd_node_tolerance phyd_nodes

Page of 35 186

phyd_nodes
 Command Syntax
 phyd_nodes [nodes=?,?] [-screen]

 Print nodal coordinates. A range of node numbers can be specified by
 nodes=. The first value is the first node number in the range, and the
 second value is the last number in the range. The default is to print the
 coordinates for all nodes defined. The default is to print to output file
 only; if -screen is present, then output is to the screen as well.

 See Also
 hyd_nodes

Page of 36 186

hyd_node_gen
 Command Syntax
 hyd_node_gen
 linear=node1,node2 [inc=?] [w=?]
 quad=node1,node2,node3,node4 [inc=inc1,inc2] [w=w1,w2]

 Generates nodal coordinates. The hyd_nodes command must preceed this
 command.

 Linear generation is specified by the identifier linear. Nodes are
 generated from node1 to node2 with a node increment of inc (default=1).
 The spacing of nodes is equidistant unless the positive weight w
 (default=1) is specified, in which case the spacing between node n and
 n+1 is equal to w times the spacing between n-1 and n.

 The identifier quad specifies node generation within the
 "quadrilateral" defined by the four nodes (see sketch below). Linear
 generation is done between node1 and node2, and between node3 and
 node4, based on inc1 and w1. Linear generation is also done between
 node1 and node3, and between node2 and node4, based on inc2 and w2.
 Then, linear generation is done between the nodes generated from 1-3
 and 2-4, based on inc1 and w1. The number of interior lines generated
 is the same as the number of nodes generated from 1-3. If the number of
 nodes generated from 1-3 is larger than the number generated from 2-4,
 the "extra" lines will not be generated, as this would result in a
 redefinition of nodal coordinates along 3-4. If node3 and node4 are
 identical, the generated nodes are within a triangular domain. The
 nodes need not be coplanar.

 End input with a blank line.

 node3 node4
 X----------O----------O----------O----------X
 | |
 | |
 | |
 | |
 node1 | node1+inc2 |
 +inc2 O O +inc1 O O O
 ^ | |
 | | |
 generate | |
 w/ | |
 inc2 | |
 | |
 | generate w/ inc1 -> |
 X----------O----------O----------O----------X
 node1 node1+inc1 node2

 X = specified node
 O = generated node

 See also
 hyd_nodes

Page of 37 186

hyd_node_tolerance
 Command Syntax
 hyd_node_tolerance [z_tol=?] [x_tol=?] [y_tol=?]

 Checks for and corrects slight errors in nodal coordinates. This
 command checks for nodes that should be on the still water plane or
 planes of symmetry, but numerical precision-related errors cause them
 to be slightly off these planes. This can happen when coordinates are
 generated by a mesh generation or CAD program, or when input
 coordinates are transformed. If a nodal z-coordinate is within z_tol
 (plus or minus) of the still water plane, it is set to 0. For single or
 double symmetry, if a nodal y-coordinate is within y_tol of the x-z
 plane, it is set to 0. For double symmetry, if a nodal x-coordinate is
 within x_tol of the y-z plane, it is set to 0. The default for each
 tolerance is 0.001. Tolerances should be positive; if a negative value
 is specified, the default of .001 is used. (Note: the symmetry type
 must have been specified by the hyd_parameters command for x_tol and
 y_tol to be used.

 See Also
 hyd_nodes

Page of 38 186

hyd_panel
 Constant pressure flat fluid panel

 Command Syntax
 hyd_panel n=?
 n=nel nodes=node1,node2,node3,node4 [gen=gen inc=inc1,inc2] &
 [gen_2d=gen_2d inc_2d=inc1_2d,inc2_2d inc_el=inc_el]

 n is the maximum panel (element) number

 nel is the element number
 node1 thru node4 are node numbers
 inc1, inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Nodes 1 to 4 are the corner nodes for quadrilateral elements. For
 triangular elements, node 4 should either be 0 or equal to node 3. The
 nodes are specified clockwise, looking from the fluid (see sketch below).

 A "linear sequence" of elements can be generated by specifying inc1, inc2
 and gen. In a linear sequence, nodes 1 and 2 are incremented by inc1; and
 nodes 3 and 4 are incremented by inc2. gen is the number of elements to
 generate, so a sequence will have gen+1 elements. To generate a 2D patch
 of elements, multiple sequences can be specified; inc1_2d and inc2_2d are
 used to increment the node numbers from one sequence to the next. gen_2d
 is the number of additional sequences. The element numbers in two
 successive sequences differ by inc_el (default = numgen+1).

 End input with a blank line.

 On input, created arrays are:

 .hyd_panel_el(4,n) -> node1 - node4
 .hyd_#panels(1) -> total # of defined panels
 .hyd_#wetpanels(1) -> total # of wet panels
 .hyd_panela(nwet) -> panel areas
 .hyd_paneln(3,nwet) -> components of panel normals
 .hyd_paneltype(nwet) -> = 0 for quad; = 1 for triangle
 .hyd_panel_code(n) -> wet/dry panel codes
 .hyd_panel_#map(n) -> map panel numbers to internal numbers
 .hyd_xr(nwet,4) -> x coord. of the panel corners
 .hyd_yr(nwet,4) -> y coord. of the panel corners
 .hyd_zr(nwet,4) -> z coord. of the panel corners
 .hyd_xyzc(nwet,3) -> x,y,z coords. of the panel centers

 where nwet are the number of wet panels (see below).

 Panels that are out of the fluid are ignored for hydrodynamic
 calculations. The vector .hyd_panels_code contains a character code:
 blank -> panel not defined; W -> wet panel; D -> dry panel; V -> wet
 panel that is partially dry; and E -> dry panel that is partially wet. A
 panel with all nodes below the still water plane is W. A panel with all
 nodes above the still water plane is D. A panel with some nodes above the
 still water plane and some below is either V or E. It is V if the panel
 center is below the still water line. It is E if the center is above the

Page of 39 186

 still water line. Only wet panels (W and V) are included in the
 hydrodynamic calculations. These panels are numbered internally. The
 mapping from the "external" numbering to the internal numbering is in the
 vector .hyd_panels_#map.

 If the 4 nodes of a quadrilateral panel are not coplanar, it is replaced
 by an "equivalent" flat panel; it is the data for this flat panel that
 are stored in the above arrays.

 The hyd_nodes command must precede this command. Also, because the panel
 normals and the coordinates of the panel corners and the centroids are in
 the inertial coordinate system, the hyd_coords_trans command, if it is
 required, must precede this command.

 node2 node3
 X---X
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 X---X
 node1 node4

 See Also
 phyd_nodes phyd_panel

Page of 40 186

phyd_panel
 Command Syntax
 phyd_panel [-wet_only]

 Print hyd_panel element data.

 If -wet_only is specified, only "wet" panels will be printed.

 See Also
 hyd_panel

Page of 41 186

hyd_panel_rmap
 Create reverse mapping of panel numbers

 Command Syntax
 hyd_panel_rmap

 Create the integer vector .hyd_panel_rmap(#wetpanels) that contains the
 input panel number for each wet panel. The wet panel number is assigned
 internally, and ranges from 1 to #wetpanels.

 This command is called automatically by hyd_analysis if the potentials or
 pressures are requested. The mapping is needed to print the potentials
 and pressures.

 See Also
 hyd_analysis hyd_panel

Page of 42 186

hyd_parameters
 Input control parameters for the hydrodynamic analysis.

 Command Syntax
 hyd_parameters h=? [symmetry=?] [nmoder=?] [nmodef=?] [nbodies=?] &
 [gauge=?] [grav=?] [rho=?] [kh=?] [hdamp=?]

 h is the water depth
 symmetry specifies the symmetry of the panel mesh (see note below)
 = 0 -> no symmetry (default)
 = 1 -> port-stbd. (x-z) symmetry
 = 2 -> port-stbd. and fore-aft (x-z and y-z) symmetry
 nmoder is the number of "user-defined" modes (see below)
 nmodef is the number of flexible modes
 nbodies is the number of multiple bodies
 gauge is used for the panel characteristic length (default = 2.5)
 grav is the gravitational acceleration (default = 9.80665)
 rho is the mass density of the fluid (default = 1025)
 kh is the limiting depth beyond which "deep" water is assumed (k is the
 wave number; default kh = 10)
 hdamp is the structural hysteretic damping (.02 means 2% damping)

 Dimensional quantities, such as rho and grav, should be specified using
 consistent units throughout.

 The number of user-defined modes are defined by nmoder. The default value
 for nmoder is 6. Typically, these modes are the traditional rigid body
 modes of surge, sway, heave, etc, which are defined with the
 hyd_rigid_modes command. However, any user-defined modes can be
 specified, including "flexible" modes. To define other than the
 traditional rigid body modes, the user must supply the matrices required
 to define these modes (e.g., mass matrix, stiffness matrix, etc.). See
 the help on the hyd_rigid_modes command for a description of the matrices
 that must be supplied.

 nmodef is the number of flexible modes that are to be input with the
 command hyd_flex_modes.

 The parameter nbodies may be specified if the analysis of multiple bodies
 (connected or unconnected) is to be carried out. In this case, nbodies is
 the total number of bodies. Such an analysis can be carried out without
 specifying nbodies, but defining the rigid body modes is simplified if
 this option is used. If nbodies is given, then nmoder is set to
 6*nbodies.

 Important note regarding symmetry:
 The parameter symmetry specifies the structural symmetry with respect
 to the inertial coordinate system. Symmetry is used both to reduce user
 input and to reduce the computations of the added mass, hydrodynamic
 damping, and exciting forces. However, these quantities are determined
 for the entire structure, and the equations of motion are for the
 entire structure. Hence, the user must specify the structural matrices,
 such as mass and damping, for the entire structure. For a system of
 multiple bodies, the system is considered to be the "structure," and it
 is the structure that must be symmetric to exploit single or double
 symmetry. For additional discussion of symmetry as used in HYDRAN-XR,
 see the Getting Started section of the manual.

Page of 43 186

 The characteristic length of a panel is defined as the product of gauge
 and the square root of the panel area, nondimensionalized with respect to
 the deep water wave number. Different integration techniques are used to
 compute the surface integrals involving the Green function and its
 derivative, depending on whether the distance between the field point and
 the source point is less than or greater than the characteristic length
 of the panel. In general, 2 < GAUGE < 4. Computational experiments by
 C.J. Garrison have indicated that gauge = 2.5 is an appropriate choice
 for the approximations to the surface integrations to be valid (see
 reference 10).

 The data are stored as:
 .hyd_depth -> h
 .hyd_symmetry -> symmetry
 .hyd_nmoder -> nmoder
 .hyd_nmodef -> nmodef
 .hyd_nbodies -> nbodies
 .hyd_deep_water -> kh
 .hyd_gauge -> gauge
 .hyd_grav -> grav
 .hyd_hysdamp -> hdamp
 .hyd_fluid_rho -> rho

 See Also
 hyd_analysis hyd_flex_modes hyd_rigid_modes hyd_rmass

Page of 44 186

hyd_postresponse
 Command to determine responses

 Command Syntax
 hyd_postresponse [-disp] [-potential] [-pressure]

 This command determines response quantities based on the solution of
 the equations of motion as determined by the hyd_analysis_response
 command, which must precede this command. The existing generalized
 coordinates from that command will be used.

 If -disp is specified, the nodal displacements are determined based on
 the generalized displacements.

 If -pressure is specified, the pressures are calculated based on the
 generalized displacements. The potentials must have been saved from the
 hyd_analysis command for this option to be possible.

 If -potential is specified, the potentials for the entire structure are
 written. This means that for single and double symmetry, they are
 written for the "actual" panels and also for the "reflected panels."
 The file indicates how the reflected panels are identified. The
 potentials must have been saved from the hyd_analysis command for this
 option to be possible.

 Results are written to files with names of the form *.ext, where *
 represents the project name. Output is:

 -potential -> velocity potentials at panel centers (*.pot)
 -pressure -> pressures at panel centers (*.prs and *.hpr)
 -disp -> nodal displacements (*.dis and *.res - a binary file)

 If -pressure is specified, the hydrodynamic pressures are written to
 file *.prs and the change in hydrostatic pressures are written to file
 *.hpr. The change in hydrostatic pressure is defined as -rho * grav *
 u_z, where u_z is the displacement in the inertial z direction.

 The pressures for the entire structure are written. This means that for
 single and double symmetry, they are written for the "actual" panels
 and also for the "reflected panels." The files indicate how the
 reflected panels are identified.

 If -disp is specified, the nodal displacements are written to the
 formatted file *.dis and to the unformatted file *.res. The file *.res
 is written by the Fortran statement

 write(f_res)omega, angle, disp

 Omega and angle are the wave frequency (rad/sec) and wave angle
 (degrees). The displacements are in the vector disp(ndof), with ndof =
 6*#nodes. The outer loop is on the wave frequency.

 See Also
 hyd_analysis hyd_analysis_response

Page of 45 186

hyd_postresponse_P
 Command to determine responses

 Command Syntax
 hyd_postresponse_P [-disp] [-potential] [-pressure]

 This command determines response quantities based on the solution of
 the equations of motion as determined by the hyd_analysis_response_P
 command, which must precede this command. The existing generalized
 coordinates from that command will be used.

 If -disp is specified, the nodal displacements are determined based on
 the generalized displacements.

 If -pressure is specified, the pressures are calculated based on the
 generalized displacements. The potentials must have been saved from the
 hyd_analysis command for this option to be possible.

 If -potential is specified, the potentials for the entire structure are
 written. This means that for single and double symmetry, they are
 written for the "actual" panels and also for the "reflected panels."
 The file indicates how the reflected panels are identified. The
 potentials must have been saved from the hyd_analysis command for this
 option to be possible.

 Results are written to files with names of the form *.ext, where *
 represents the project name. Output is:

 -potential -> velocity potentials at panel centers (*.pot)
 -pressure -> pressures at panel centers (*.prs and *.hpr)
 -disp -> nodal displacements (*.dis and *.res - a binary file)

 If -pressure is specified, the hydrodynamic pressures are written to
 file *.prs and the change in hydrostatic pressures are written to file
 *.hpr. The change in hydrostatic pressure is defined as -rho * grav *
 u_z, where u_z is the displacement in the inertial z direction.

 The pressures for the entire structure are written. This means that for
 single and double symmetry, they are written for the "actual" panels
 and also for the "reflected panels." The files indicate how the
 reflected panels are identified.

 If -disp is specified, the nodal displacements are written to the
 formatted file *.dis and to the unformatted file *.res. The file *.res
 is written by the Fortran statement

 write(f_res)omega, angle, disp

 Omega and angle are the wave frequency (rad/sec) and wave angle
 (degrees). The displacements are in the vector disp(ndof), with ndof =
 6*#nodes. The outer loop is on the wave frequency.

 See Also
 hyd_analysis hyd_analysis_response

Page of 46 186

hyd_rigid_modes
 Generate the traditional rigid body modes

 Command Syntax
 hyd_rigid_modes [body=?] [nodes=?,?] [panels=?,?] [body_sym=?] &
 [reflected=?,?,?]

 This command generates surge, sway, heave, roll, pitch, and yaw rigid
 body modes relative to the body-fixed coordinate system. For a single
 body, no parameters are required. If this command is used, it must be
 given before the hyd_flex_modes command.

 For multiple bodies, as defined by the parameter nbodies in the
 hyd_parameters command, it will generate the rigid body modes for the
 body number specified by the parameter body. Hence, one hyd_rigid_modes
 command must be issued for each body for which a mesh is specified
 explicitly. The first command must be for body 1. The parameters nodes
 and panels specify the ranges of nodes and panels corresponding to body.
 For example, body=1 nodes=1,100 panels=1,81 mean that body 1 is
 represented by nodes 1 to 100 and panels 1 to 81. If symmetry in the
 command hyd_parameters is 1 or 2, then the parameter body_sym must be
 specified here. It will be: 0, if the mesh for the particular body is for
 the entire body; 1, if the mesh for the particular body is for 1/2 the
 body; and 2 if the mesh for the particular body is for 1/4 the body. This
 specification is required so that the hydrostatic stiffness will be
 calculated correctly. Furthermore, if another body is represented by a
 reflection of this body, then that body number is specified by the
 parameter reflected. For single symmetry, at most one other body can be
 given. For double symmetry, either 0, 1, or 3 bodies can be specified.

 Modes 1 - 6 correspond to body 1. For multiple bodies, modes 7 - 12
 correspond to body 2, etc.

 The following arrays are created, where nmode = nmoder + nmodef. This
 command populates the arrays with the appropriate data for the first nmoder
 modes.

 .hyd_modesym(nmode) -> symmetry codes for each mode
 .hyd_kf(nmode,nmode) -> hydrostatic stiffness matrix
 .hyd_umx(nnode,nmode) -> nodal x-displs.
 .hyd_umy(nnode,nmode) -> nodal y-displs.
 .hyd_umz(nnode,nmode) -> nodal z-displs.
 .hyd_thx(nnode,nmode) -> nodal x-rotations
 .hyd_thy(nnode,nmode) -> nodal y-rotations
 .hyd_thz(nnode,nmode) -> nodal z-rotations
 .hyd_un(nmode,npanel) -> panel normal displacements
 .hyd_uz(nmode,npanel) -> panel z-displacements

 The symmetry code for mode j is stored in .hyd_modesym(j). These codes are
 only used if the structural symmetry parameter on the hyd_parameters
 command is 1 or 2, indicating single (x-z) or double (x-z and y-z)
 structural symmetry, respectively. For single symmetry, the modal symmetry
 code is:

 1 -> symmetric
 2 -> antisymmetric

 For double symmetry, the modal symmetry code is:

Page of 47 186

 1 -> symmetric/antisymmetric
 2 -> antisymmetric/symmetric
 3 -> symmetric/symmetric
 4 -> antisymmetric/antisymmetric

 where, e.g., symmetric/antisymmetric means symmetric with respect to the
 x-z plane and antisymmetric with respect to the y-z plane.

 If user-defined modes are used but this command is not, then these arrays
 should be created with the appropriate data.

 See Also
 hyd_flex_modes hyd_rmass

Page of 48 186

hyd_rmass
 Input the structural mass matrix.

 Command Syntax
 hyd_rmass [body=?]

 The mass matrix is specified "row-wise" immediately following the
 command, with 1 record per row. Note that only the mass associated with
 the user-defined modes is input with this command. This command is
 usually used to input a rigid body mass matrix. The mass matrix should
 be specified with respect to the same coordinates used to define the
 modes. If hyd_rigid_modes is used to define the rigid modes, then the
 mass matrix in the body-fixed coordinate system should be given here.

 For a single body, the parameter body is not required. The command
 expects the (nmoder,nmoder) matrix to be input.

 For multiple bodies, as specified by the parameter nbodies in the
 command hyd_parameters, the 6x6 mass matrix for body is expected.
 Hence, one hyd_rmass command must be given for each body. The first
 command must be for body 1.

 The mass matrix is stored in the array hyd_mstr(nmode,nmode). If this
 matrix does not exist, it will be created. This command is not required. If
 it is not used, the structural mass matrix (hyd_mstr) must be defined in
 some other way.

 See Also
 hyd_coordaxs hyd_rigid_modes

Page of 49 186

hyd_surf_elevation
 Command to determine the "free" surface elevation (i.e., the potentials)
 after a hydrodynamic analysis.

 Command Syntax
 hyd_surf_elevation [incoming=?] [diffraction=?] [radiation=?] &
 [dif=difname] [rad=radname]

 incoming = 1 -> include the incoming potential (default)
 = 0 -> do not include the incoming potential
 diffraction = 1 -> include the diffraction potential (default)
 = 0 -> do not include the diffraction potential
 radiation = 1 -> include the radiation potential (default)
 = 0 -> do not include the radiation potential

 If dif= is specified, the diffraction source strengths are read from
 file difname; otherwise they are read from file project_name.dif.

 If rad= is specified, the radiation source strengths are read from file
 radname; otherwise they are read from file project_name.rad.

 The hyd_analysis and hyd_surf_nodes commands must precede this command.
 As of now, this command has only been implemented for the case of no
 symmetry (hyd_parameters command). Also, the -source option must have
 been specified on the hyd_analysis command to create the files with the
 source strengths.

 The surface elevation is stored in the array
 .hyd_surf_disp(nnode,nfreq,nbeta), where nnode is the number of surface
 nodes (hyd_surf_nodes command).

 The purpose of this command is to generate the surface elevations for
 export to graphics programs for visualization; see the command
 hyd_export_graphics.

 NOTE: this command is only implemented for the case of no symmetry.

 See Also
 hyd_analysis hyd_export_graphics hyd_parameters hyd_surf_nodes
 hyd_surf_panel

Page of 50 186

hyd_surf_nodes
 Command Syntax
 hyd_surf_nodes #=?
 n=node_no x=x-coor y=y-coor z=z-coor [lgen=lgen]

 Reads and generates surface nodal coordinates in inertial coordinates.
 The surface nodal coordinates are used to plot surface elevation only.
 The value specified by # is used to define storage requirements, and it
 must be greater than or equal to the maximum node number. If this value
 is missing or 0, it is assumed that existing nodes are being changed or
 added to, and the previous value applies. lgen is the node number
 increment for linear generation. Nodes are generated equally spaced
 along a straight line if two adjacent records do not have sequential
 node numbers and if lgen on the second line is not zero or blank.
 Nodes need not be input in sequence.

 End input with a blank line.

 This command must precede the hyd_surf_panel command.

 The coordinates are stored in array .hyd_surf_xyz(3,#), and the maximum
 possible node number (specified by #) is stored in .hyd_#surf_nodes_tot.

 Active nodes are those that are defined explicitly either by this command
 or another command that creates surface nodes. The node number of the
 maximum defined surface node is stored in .hyd_#surf_nodes. The character
 vector .hyd_surf_node_active has an "A" for active nodes. Only active
 nodes can be used.

 The hyd_surf_nodes command need not be executed as long as the
 coordinates, which could be generated by another program, are put in the
 array .hyd_surf_xyz, and .hyd_#surf_nodes and .hyd_#surf_nodes_tot are
 set, and .hyd_surf_node_active is created.

 NOTE: Surface nodes cannot be on body panels (as specified by the
 hyd_nodes and hyd_panel commands. Locate these surface nodes (and panels)
 a small distance away from the actual body. If a surface node does lie on
 the body, the surface elevation for that node will likely be reported as
 NaN.

 See Also
 hyd_surf_node_gen hyd_surf_node_tolerance phyd_surf_nodes

Page of 51 186

phyd_surf_nodes
 Command Syntax
 phyd_surf_nodes [nodes=?,?] [-screen]

 Print surface nodal coordinates. A range of node numbers can be specified
 by nodes=. The first value is the first node number in the range, and the
 second value is the last number in the range. The default is to print the
 coordinates for all nodes defined. The default is to print to output file
 only; if -screen is present, then output is to the screen as well.

 See Also
 hyd_surf_nodes

Page of 52 186

hyd_surf_node_gen
 Command Syntax
 hyd_surf_node_gen
 linear=node1,node2 [inc=?] [w=?]
 quad=node1,node2,node3,node4 [inc=inc1,inc2] [w=w1,w2]

 Generates nodal coordinates. The hyd_surf_nodes command must preceed
 this command.

 Linear generation is specified by the identifier linear. Nodes are
 generated from node1 to node2 with a node increment of inc (default=1).
 The spacing of nodes is equidistant unless the positive weight w
 (default=1) is specified, in which case the spacing between node n and
 n+1 is equal to w times the spacing between n-1 and n.

 The identifier quad specifies node generation within the
 "quadrilateral" defined by the four nodes (see sketch below). Linear
 generation is done between node1 and node2, and between node3 and
 node4, based on inc1 and w1. Linear generation is also done between
 node1 and node3, and between node2 and node4, based on inc2 and w2.
 Then, linear generation is done between the nodes generated from 1-3
 and 2-4, based on inc1 and w1. The number of interior lines generated
 is the same as the number of nodes generated from 1-3. If the number of
 nodes generated from 1-3 is larger than the number generated from 2-4,
 the "extra" lines will not be generated, as this would result in a
 redefinition of nodal coordinates along 3-4. If node3 and node4 are
 identical, the generated nodes are within a triangular domain. The
 nodes need not be coplanar.

 End input with a blank line.

 node3 node4
 X----------O----------O----------O----------X
 | |
 | |
 | |
 | |
 node1 | node1+inc2 |
 +inc2 O O +inc1 O O O
 ^ | |
 | | |
 generate | |
 w/ | |
 inc2 | |
 | |
 | generate w/ inc1 -> |
 X----------O----------O----------O----------X
 node1 node1+inc1 node2

 X = specified node
 O = generated node

 See also
 hyd_surf_nodes

Page of 53 186

hyd_surf_node_tolerance
 Command Syntax
 hyd_surf_node_tolerance [z_tol=?] [x_tol=?] [y_tol=?]

 Checks for and corrects slight errors in nodal coordinates. This command
 checks for nodes that should be on the still water plane or planes of
 symmetry, but numerical precision-related errors cause them to be
 slightly off these planes. This can happen when coordinates are generated
 by a mesh generation or CAD program, or when input coordinates are
 transformed. Surface nodes must have z-coordinate of 0, so this command
 enforces that requirement. A warning is printed if the input z-coordinate
 is further away than ztol. For single or double symmetry, if a nodal
 y-coordinate is within y_tol of the x-z plane, it is set to 0. For double
 symmetry, if a nodal x-coordinate is within x_tol of the y-z plane, it is
 set to 0. The default for each tolerance is 0.001. Tolerances should be
 positive; if a negative value is specified, the default of .001 is used.
 (Note: the symmetry type must have been specified by the hyd_parameters
 command for x_tol and y_tol to be used.

 See Also
 hyd_surf_nodes

Page of 54 186

hyd_surf_panel
 Surface panel for surface elevation. There are two Command Syntax options.

 Command Syntax (option 1)
 hyd_surf_panel n=?
 n=nel nodes=node1,node2,node3,node4 [gen=gen inc=inc1,inc2] &
 [gen_2d=gen_2d inc_2d=inc1_2d,inc2_2d inc_el=inc_el]

 n is the maximum panel (element) number

 nel is the element number
 node1 thru node4 are node numbers
 inc1, inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Nodes 1 to 4 are the corner nodes for quadrilateral elements. For
 triangular elements, node 4 should either be 0 or equal to node 3. The
 nodes are specified clockwise, looking at the surface from above (see
 sketch below).

 Command Syntax (option 2)
 hyd_surf_panel -subdivide range=?,? nxm=?,?

 Option 2 subdivides previously defined panels
 range specifies a range of panel ID numbers; all panels
 in the range are divided
 nxm specifies how many panels to subdivide each panel into.
 For example, nxm=2,3 would subdivide each panel into 6
 elements; 2 in the 1-2 direction and 3 in the 1-4 direction.

 A "linear sequence" of elements can be generated by specifying inc1, inc2
 and gen. In a linear sequence, nodes 1 and 2 are incremented by inc1; and
 nodes 3 and 4 are incremented by inc2. gen is the number of elements to
 generate, so a sequence will have gen+1 elements. To generate a 2D patch
 of elements, multiple sequences can be specified; inc1_2d and inc2_2d are
 used to increment the node numbers from one sequence to the next. gen_2d
 is the number of additional sequences. The element numbers in two
 successive sequences differ by inc_el (default = numgen+1).

 End input with a blank line.

 On input, created arrays are:

 .hyd_surf_panel_el(4,n) -> node1 - node4
 .hyd_#surf_panels(1) -> total # of defined panels
 .hyd_surf_panel_code(n) -> see below
 .hyd_surf_paneltype(nwet) -> = 0 for quad; = 1 for triangle
 .hyd_surf_panel_#map(n) -> map panel numbers to internal numbers

 where nwet are the number of wet panels (see below).

 These panels are only used when exporting the surface elevation to
 graphics programs for visualization. They are not used for any
 calculations. The surface elevations are calculated at the surface nodes.
 The vector .hyd_panel_code contains a character code: blank -> panel not

Page of 55 186

 defined; W -> wet panel (defined); These panels are numbered internally.
 The mapping from the "external" numbering to the internal numbering is in
 the vector .hyd_surf_panel_#map.

 The hyd_surf_nodes command must precede this command.

 node2 node3
 X---X
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 X---X
 node1 node4

 See Also
 phyd_surf_nodes phyd_surf_panel

Page of 56 186

phyd_surf_panel
 Command Syntax
 phyd_surf_panel

 Print hyd_surf_panel element data.

 Only defined panels will be printed.

 See Also
 hyd_surf_panel

Page of 57 186

hyd_tf
 Calculate transfer functions

 Command Syntax
 hyd_tf [arg1 arg2] [ext=extension file=filename] [-radians] &
 [-period] [-RAO]

 After the response analysis has been carried out with the
 hyd_analysis_response command, transfer functions for any response quantity
 can be obtained with this command. arg1 is the name of a user-defined
 'modal matrix' of dimension (ncomp,nmode), where ncomp is the number of
 response components and nmode is the number of assumed modes used in the
 analysis. Column i of arg1 contains the response of each component in mode
 i. The default name for arg1 is hyd_modemat. The transfer functions are
 obtained by multiplying arg1 with the generalized coordinates calculated
 previously by the hyd_analysis command. The transfer functions are put in
 the complex array whose name is specified by arg2 (default name is hyd_tf).
 The command creates this array with dimensions (nfreq,nbeta,ncomp), where
 nfreq and nbeta are the number of frequencies and wave angles,
 respectively.

 The transfer functions (magnitude and phase angle) are written to a file.
 If extension is specified, the file name is project_name.extension. If
 filename is specified, the file will have the name specified by filename.
 The default file is project_name.tf. If -radians is specified, the phase
 angle will be written in radians; otherwise, it will be written in degrees.
 If -period is specified, the transfer functions will be written as a
 function of wave period rather than wave frequency. If -RAO is specified,
 only the RAO (magnitude) will be printed. The default is to print both RAO
 and phase angle.

 Note: transfer functions for the generalized displacements can be generated
 by specifying the matrix arg1 as an nmode x nmode identity matrix. If arg1
 is not specified, and the default matrix (hyd_modemat) does not exist, then
 an identity matrix named hyd_modemat will be created and the transfer
 functions for the generalized displacements will be generated. If this is
 done for the 6 rigid body modes, for example, the transfer functions for
 rotations will be in radians. To obtain transfer functions in degrees, arg1
 (hyd_modemat) should have the appropriate conversion factors. For
 example,the following commands would create such a matrix:

 ident hyd_modemat r=6 c=6
 pi PI
 setr tmp v=180
 scale tmp PI -inv
 put tmp hyd_modemat r=4 c=4
 put tmp hyd_modemat r=5 c=5
 put tmp hyd_modemat r=6 c=6
 rm tmp PI

 Because of the defaults, the command

 hyd_tf

 is equivalent to

 hyd_tf hyd_modemat hyd_tf ext=tf

Page of 58 186

 As many hyd_tf commands as desired can be used.

 See Also
 hyd_analysis_response hyd_irregular

Page of 59 186

hyd_velocity
 Determine the fluid velocity after a hydrodynamic analysis.

 Command Syntax
 hyd_velocity del=delx,dely,delz [incoming=?] [diffraction=?] &
 [radiation=?] [dif=difname] [rad=radname] [-keep_pot]

 delx,dely,delz are the differences in the coordinates to obtain the
 gradient of the potentials. If only delx is specified, dely and delz
 are set to delx.

 incoming = 1 -> include the incoming potential (default)
 = 0 -> do not include the incoming potential
 diffraction = 1 -> include the diffraction potential (default)
 = 0 -> do not include the diffraction potential
 radiation = 1 -> include the radiation potential (default)
 = 0 -> do not include the radiation potential
 -keep_pot if present, then the velocity potentials are kept

 If dif= is specified, the diffraction source strengths are read from
 file difname; otherwise they are read from file project_name.dif.

 If rad= is specified, the radiation source strengths are read from file
 radname; otherwise they are read from file project_name.rad.

 The hyd_analysis and hyd_velocity_nodes commands must precede this
 command. As of now, this command has only been implemented for the case
 of no symmetry (hyd_parameters command). Also, the -source option must
 have been specified on the hyd_analysis command to create the files with
 the source strengths.

 The del values are stored in .hyd_vel_del(3).

 The velocities are calculated for the nodes in .hyd_vel_xyz(3,nnodes) as
 follows. First, six points around the nodes, at +-delx, +-dely, and
 +-delz (in that order) are defined and stored in
 .hyd_vel6_xyz(3,6*nnodes). If a node is within delz of the still water
 plane or seafloor, the node is used as the point instead. The potentials
 for these 6 points are then calculated. The velocities are obtained as,
 for example, velocity_x = (phi(x+delx,y,z) - phi(x-delx,y,z)/(2 * delx).
 (The expression is adjusted if the points are not 2*delx apart.) The
 x,y,z velocity components are stored in
 .hyd_vel_nodes(3,nnodes,nfreq,nbeta), which is complex. nfreq and nbeta
 are the number of wave frequencies and angles, respectively. The velocity
 potentials are stored in .hyd_vel6pot(6*nnodes,nfreq,nbeta). This array
 is usually destroyed, but if -keep_pot is used, it will be kept in the
 database.

 NOTE: this command is only implemented for the case of no symmetry.

 See Also
 hyd_analysis hyd_parameters hyd_velocity_nodes

Page of 60 186

phyd_velocity
 Command Syntax
 phyd_velocity [-period]

 Print fluid velocities. If -period is specified, the velocities will be
 written as a function of wave period rather than wave frequency.

 See Also
 hyd_velocity

Page of 61 186

hyd_velocity_nodes
 Command Syntax
 hyd_velocity_nodes #=?
 n=node_no x=x-coor y=y-coor z=z-coor [lgen=lgen]

 Reads and generates inertial coordinates of "nodes" at which to
 calculate fluid velocities. The value specified by # is used to define
 storage requirements, and it must be greater than or equal to the
 maximum node number. If this value is missing or 0, it is assumed that
 existing nodes are being changed or added to, and the previous value
 applies.

 lgen is the node number increment for linear generation. Nodes are
 generated equally spaced along a straight line if two adjacent records
 do not have sequential node numbers and if lgen on the second line is
 not zero or blank. Nodes need not be input in sequence.

 End input with a blank line.

 This command must precede the hyd_velocities command.

 The coordinates are stored in array .hyd_vel_xyz(3,#), and the total
 number of defined nodes is put in the scalar .hyd_#vel_nodes. This may be
 less than # specified on the command line, which is stored in
 .hyd_#vel_nodes_tot. Currently, the defined nodes are assumed to be
 sequential from 1 to .hyd_#vel_nodes.

 The hyd_velocity_nodes command need not be executed as long as the arrays
 created by this command are defined "manually".

 NOTE: Velocity nodes cannot be on body panels (as specified by the
 hyd_nodes and hyd_panel commands). Locate the velocity nodes over del
 away from the actual body (see help on hyd_velocity). In addition, they
 cannot be above the still water line or below the sea floor. It is
 recommended to run the command hyd_velocity_node_tolerance before
 hyd_velocity.

 See Also
 hyd_velocity_node_gen hyd_velocity_node_tolerance phyd_velocity_nodes

Page of 62 186

phyd_velocity_nodes
 Command Syntax
 phyd_velocity_nodes [nodes=?,?] [-screen]

 Print velocity nodal coordinates. A range of node numbers can be
 specified by nodes=. The first value is the first node number in the
 range, and the second value is the last number in the range. The default
 is to print the coordinates for all nodes defined. The default is to
 print to output file only; if -screen is present, then output is to the
 screen as well.

 See Also
 hyd_velocity_nodes

Page of 63 186

hyd_velocity_node_gen
 Command Syntax
 hyd_velocity_node_gen
 linear=node1,node2 [inc=?] [w=?]
 quad=node1,node2,node3,node4 [inc=inc1,inc2] [w=w1,w2]

 Generates nodal coordinates. The hyd_velocity_nodes command must
 preceed this command.

 Linear generation is specified by the identifier linear. Nodes are
 generated from node1 to node2 with a node increment of inc (default=1).
 The spacing of nodes is equidistant unless the positive weight w
 (default=1) is specified, in which case the spacing between node n and
 n+1 is equal to w times the spacing between n-1 and n.

 The identifier quad specifies node generation within the
 "quadrilateral" defined by the four nodes (see sketch below). Linear
 generation is done between node1 and node2, and between node3 and
 node4, based on inc1 and w1. Linear generation is also done between
 node1 and node3, and between node2 and node4, based on inc2 and w2.
 Then, linear generation is done between the nodes generated from 1-3
 and 2-4, based on inc1 and w1. The number of interior lines generated
 is the same as the number of nodes generated from 1-3. If the number of
 nodes generated from 1-3 is larger than the number generated from 2-4,
 the "extra" lines will not be generated, as this would result in a
 redefinition of nodal coordinates along 3-4. If node3 and node4 are
 identical, the generated nodes are within a triangular domain. The
 nodes need not be coplanar.

 End input with a blank line.

 node3 node4
 X----------O----------O----------O----------X
 | |
 | |
 | |
 | |
 node1 | node1+inc2 |
 +inc2 O O +inc1 O O O
 ^ | |
 | | |
 generate | |
 w/ | |
 inc2 | |
 | |
 | generate w/ inc1 -> |
 X----------O----------O----------O----------X
 node1 node1+inc1 node2

 X = specified node
 O = generated node

 See also
 hyd_velocity_nodes

Page of 64 186

hyd_velocity_node_tolerance
 Command Syntax
 hyd_velocity_node_tolerance [z_tol=?] [x_tol=?] [y_tol=?]

 Checks for and corrects slight errors in nodal coordinates. This command
 checks for nodes that are above the still water plane, below the
 seafloor, or should be on the planes of symmetry, but numerical
 precision-related errors cause them to be slightly off these planes. This
 can happen when coordinates are generated by a mesh generation or CAD
 program, or when input coordinates are transformed. Velocity nodes must
 have z-coordinates in the range -water depth <= z <= 0. This command
 enforces that requirement. A warning is printed if the input z-coordinate
 is adjusted. For single or double symmetry, if a nodal y-coordinate is
 within y_tol of the x-z plane, it is set to 0. For double symmetry, if a
 nodal x-coordinate is within x_tol of the y-z plane, it is set to 0. The
 default for each tolerance is 0.001. Tolerances should be positive; if a
 negative value is specified, the default of .001 is used. (Note: the
 symmetry type must have been specified by the hyd_parameters command for
 x_tol and y_tol to be used.

 See Also
 hyd_velocity_nodes

Page of 65 186

hyd_wave
 Specify wave frequencies (or periods) and angles for the hydrodynamic
 analysis.

 Command Syntax
 hyd_wave nbeta=? nfreq=? [-freq] [-period] [-descending] [-delete]

 nbeta = the number of wave angles (default = 1)
 nfreq = the number of incoming wave frequencies (default = 1)
 If -period is specified, input wave periods in seconds (default)
 If -freq is specified, input wave frequencies in rad/sec
 If -descending is specified, the input frequencies or periods are
 sorted in descending order; otherwise they are put in ascending order.

 Following the command, input the wave angles (in degrees) in 1 record and
 the frequencies/periods in a second record.

 If -delete is specified, then nfreq wave frequencies or periods entered on
 the next line are deleted from the list of frequencies/periods previously
 input (wave angles are not input and cannot be deleted). At least one
 frequency must remain after deletion. Corresponding data such as added
 mass, potentials, and generalized coordinates are also deleted. However,
 transfer functions generated by the hyd_tf command are not modified. hyd_tf
 should be re-run after frequencies are deleted.

 The data are stored as:
 .hyd_wave(2) -> nbeta, nfreq
 .hyd_beta(nbeta) -> wave angles in radians
 .hyd_freq(nfreq) -> wave frequencies in radians/sec

 See Also
 hyd_analysis

Page of 66 186

hyd_wave_dispersion
 Command to determine the wave number and wave length

 Command Syntax
 hyd_wave_dispersion

 Given the water depth from the hyd_parameters command, and the wave
 frequencies from the hyd_wave command, this command solves the
 dispersion equation to report the wave number and the wave length for
 each frequency.

 See Also
 hyd_parameters hyd_wave

Page of 67 186

hyd_wave_spectra
 Specify wave spectra

 Command Syntax
 hyd_wave_spectra #=nspectra
 n=? name=? (Additional data depends on wave spectrum; see below)

 Reads the data to specify nspectra wave spectra. n is the spectrum
 number (1 to nspectra) and name is the spectrum name. Allowable spectra
 and their input are:

 name=Bretschneider Hs=significant_wave_height To=modal_period

 name=ISSC Hs=significant_wave_height Tv=visual_period

 name=JONSWAP To=modal_period gamma=gamma Xo=Xo
 (default gamma=3.3; default Xo=0)

 name=ITTC Hs=significant_wave_height k=k (default=1)

 name=P-M-Wind U=wind_speed (Pierson-Moskowitz)

 name=P-M-Hs Hs=significant_wave_height (Pierson-Moskowitz)

 End input with a blank line.

 For those spectra that require the gravitational constant, the value
 specified via the hyd_parameters command is used.

 Note: the modal period is the inverse of the (cyclic) frequency at which
 the frequency spectrum is a maximum.

 This command stores the data in the array .hyd_wave_spectrum(6,nspectra).

 See Also
 hyd_irregular hyd_parameters phyd_wave_spectra

Page of 68 186

phyd_wave_spectra
 Print wave spectra

 Command Syntax
 phyd_wave_spectra [-spectrum]

 Print the wave spectra information specified by the hyd_wave_spectra
 command. If the wave frequencies have been defined, e.g., by the hyd_wave
 command, then some statistics, such as calculated significant wave
 height, for the wave spectra are also reported. The statistics are
 approximate based on the wave frequencies and the trapezoidal rule of
 integration. In addition, if -spectrum is specified, the wave spectrum is
 also printed to the output file.

 See Also
 hyd_wave hyd_wave_spectra

Page of 69 186

hyd_wet
 Command to estimate the "wet" natural frequencies and mode shapes

 Command Syntax
 hyd_wet [shift=?] [error=?] [form=format]

 The "wet" natural frequencies and mode shapes are estimated by solving
 the eigenvalue problem, for each wave frequency, using the added mass
 that was saved in the database from a previous hyd_analysis command.

 Shift is an eigenvalue shift that is used to handle zero eigenvalues.
 The default shift is 1. Error is the maximum error allowed for a wet
 frequency, as explained below. Form is the Fortran format in which to
 write the mode shapes (no spaces are allowed in the character string).

 An estimate of the error in the calculated wet frequency omega_n is

 |omega - omega_n|/omega*100%

 where omega is the wave frequency. Only those frequencies omega_n for
 which the estimated error is less than or equal to the value of error
 on the command line are reported. The default value for error is very
 large, so that all omega_n are reported.

 Before the hyd_wet command is given, the structural mass and stiffness
 matrices must be defined as database members and named hyd_mstr and
 hyd_kstr, respectively. In addition, the hydrostatic stiffness .hyd_kf
 must be defined (do not forget the dot!). The dimensions of these
 matrices should be (nmode,nmode), where nmode is the number of modes.
 In the typical case, these matrices will have been defined already as
 part of the wave response analysis.

 The "wet" natural frequencies are written to the output file as a
 function of wave frequency. Both the natural frequencies and mode
 shapes are also written to file probname.wet. In general, the mode
 shapes are in terms of the generalized coordinates. However, if the
 matrix hyd_modemat(ncomp,nmode) exists, the modes will be expressed in
 terms of the ncomp components. That is, the mode shapes will be
 multiplied by hyd_modemat, and the result will be written to *.wet. If
 hyd_modemat exists, the default format for writing is (i15,3x,1pe14.4);
 otherwise, the default format is (i17,1x,1pe14.4). The integer refers
 to the component/mode number. This format can be overwritten by
 specifying a format in the command line. The format must be of the same
 form as the default and without any blanks. This option is meant to
 allow the output of more digits for postprocessing. An example is:
 form=(i15,3x,1pe20.10). Note that the parentheses are required.

 The following main arrays are created in the database:

 .hyd_wet_freq(nmode) -> wet natural frequencies
 .hyd_wet_modes(nmode,nmode) -> wet mode shapes
 .hyd_wet_freq_cumulate(*) -> converged wet natural frequencies
 .hyd_wet_modes_cumulate(nmode,*) -> converged wet modes

 Note that the first two matrices will contain the data only for the
 last wave frequency considered, while the second two accumulate the
 converged natural frequencies and mode shapes over all wave
 frequencies, i.e., those results that meet the convergence criterion.

Page of 70 186

 Of course, the number of converged frequencies is unknown prior to the
 analysis.

 See Also
 hyd_analysis

Page of 71 186

2.2. General Commands

break_loop
 Command Syntax
 break_loop
 Break out of a do/while loop. Note: in the case of nested loops, this
 command breaks out of the entire loop.

 See Also
 do while

date
 Command Syntax
 date [arg] [-noprint]
 Prints the current date and time right justified on an 80 column page.
 If arg is specified, the date and time are also stored in a character
 array. If -noprint is specified, the date is not printed.

 See Also
 time

do
 Command Syntax
 do arg1 f=? l=? [s=?]
 block of commands
 end_do

 arg1 is the name of the loop variable. f is the first value, l is the
 last value, and s is the increment (default = 1). If arg1 is a real or
 integer matrix in the database, the first value is used, and the
 comparison is based on the type of arg1. If arg1 does not exist, an
 integer scalar with that name is created; it will not be deleted at
 completion.

 While and do commands may have a combined nesting of 15 levels. The
 following restrictions apply:

 Do/while loops in separate files may not be active at one time.
 Specifically, if a do/while loop is in an input file, the filein
 command must not be issued from inside a do/while loop.

 A break_loop command causes the exit of an entire do/while loop, not
 just the "subloop" in the case of nested loops.

 A return command must not occur inside the body of a do/while loop. A
 return command may occur in an input file read inside a loop,
 however, to cause the input file to be exited.

 See Also
 break_loop if while

filein
 Command Syntax
 filein [filename] [-noecho]
 Opens the file "filename" and reads commands for "batch" execution.

Page of 72 186

 If filename is not given, the program tries to open a file with the
 same name as the project, but with the extension .txt; i.e., .txt is
 appended to the project name. If that fails, it tries to open the file
 without the extension.

 If filename is specified, the extension .txt, if it exists, can be
 omitted.

 NOTE: The input file must be a plain text file with Windows/Macintosh
 line endings on Windows/Macintosh platforms, respectively.

 If the flag -noecho is present, the input is not echoed to the screen.

 Execution returns to the previous input file or to interactive mode
 when "return" or end-of-file is read.

 Although the actual number depends on the number of files the operating
 system/compiler allows to be open at one time, the program supports a
 nesting of filein commands up to 28 levels; that is, a filein command
 can occur in another input file.

 The login command is ignored in input files.

 See Also
 login return

flush
 Command Syntax
 flush [unit=]
 Flush the buffer for unit. If unit is not specified, standard out
 buffer is flushed (i.e., the buffer for file project_name.out).

 This command is useful, for example, to force writing to the output file
 without closing the program.

help
 Command Syntax
 help (h) command [-f] [l=?]
 On-line help for command. For an index of available commands use the
 command index.
 If -f is given, then output is written to the output file; otherwise
 output is to the screen only. If l is specified, then l lines will be
 scrolled at a time.

 Optional parameters are indicated as such by being enclosed in [].
 The [] are not part of the command.

if
 Command Syntax
 if arg1 [operator arg2]
 block of commands
 [else]
 [block of commands]
 endif

Page of 73 186

 arg1 must be a real or integer matrix in the database. The first value
 in the matrix is used in the comparison.

 The simplest form is when only arg1 is specified. In this case, a value
 of 0 is considered false, and any other value is true.

 The more general case is when operator and arg2 are specified. Operator
 is one of the following FORTRAN conditional operators:

 .eq. .ne. .lt. .le. .gt. .ge.

 If arg2 is a real or integer matrix in the database, then the
 comparison is with the first element of arg2. If arg1 and arg2 are of
 different types, the conditional is evaluated as a real. If arg2 is not
 found in the database, it is interpreted as a number of the same type
 as arg1. In this case, only one space may separate the operator and
 arg2.

 If commands may be nested.

 See Also
 do while

index
 Command Syntax
 index [topic] [-f] [l=?]
 Provides a one-line summary of available commands. If topic is given,
 topics are general, database, matrix, functions, fe_commands,
 fem_elements, and misc.

 If -f is given, then output is written to the output file; otherwise
 output is to screen only. If l is specified, then l lines will be
 scrolled at a time.

logfile
 Command Syntax
 logfile [-on] [-off]
 Turns writing to the log file on or off. Writing is always turned on at
 the start of a project, and the default option is to turn it on.

 See Also
 login

login
 Command Syntax
 login [-noecho]

 The file “project_name.log" contains a log of all commands entered in
 interactive mode. Since the log file is always appended, it contains a
 complete history of a previous run or sequence of runs (unless logging of
 commands has been turned off).

 The log file can be processed via the login command, which will open the
 file "project_name.log" as an input file. In this case, a quit in an

Page of 74 186

 input file causes a return to the log file, while it is ignored if it is
 in the log file itself. A login command is only accepted in interactive
 mode.

 If the flag -noecho is given, the input is not echoed to the screen.

 See Also
 filein logfile

name?
 Command Syntax
 name? [-f]
 Prints project name. If -f is given, then output is written to the
 output file; otherwise output is to screen only.

new_project
 Command Syntax
 new_project (or newproj or newprob)
 Initiates a new project.

 See Also
 quit save savequit

palias
 Command Syntax
 palias
 Print command aliases.

quit
 Command Syntax
 quit (q)
 Stops execution. This command is ignored if it is read from the log
 file via the login command.

 See Also
 login save savequit

read
 Command Syntax
 read arg filename [-ext]
 Read array arg from filename. If -ext is present, filename is taken to
 be an extension, and the file project_name.filename is read. It is
 assumed that the file was created by the write command (unformatted
 option) and is in the proper form.

 See Also
 write

rename_file
 Command Syntax
 rename_file filename1 filename2
 Rename filename1 to filename2.

Page of 75 186

 WARNING: Do not rename an open file. In general, commands close files
 once they finish. Files project_name.out and project_name.log remain open
 until the program terminates or a new project is opened.

 See Also
 rm_file

return
 Command Syntax
 return
 A "batch" command that closes the input file opened with the filein
 command. Causes a return to wherever the filein command was issued (the
 previous input file or interactive mode).

 See Also
 filein login

rm_file
 Command Syntax
 rm_file filename [-ext]
 Remove file filename. If -ext is present, filename is taken to be an
 extension, and the file project_name.filename is deleted.

 See Also
 read rename_file write

savequit
 Command Syntax
 savequit (sq)
 Saves the data base in the file "project_name.db" and stops execution,
 if not read from the log file via the login command.

 See Also
 save quit

system_command
 Command Syntax
 system_command (term or comm) character_string
 Issues a command to the operating system. The aliases term (for
 terminal) and comm (for command prompt) are provided because typing
 system_command is a bit unwieldy. The format of character_string, which
 contains the command, is different between Macintosh and Windows.

 Macintosh
 An example of the command is

 term 'cp name.out "name copy.out"'

 Note that single quotes are required if there are spaces in
 character_string, but they are not allowed within character_string.

 Windows
 An example of the command is

Page of 76 186

 term 'cmd.exe /c cp name.out "name copy.out"'

 Note that single quotes are required at the beginning and end of
 character_string, and they are not allowed within character_string. The
 /c is required to terminate the command. The command should also work
 without the ".exe".

time
 Command Syntax
 time arg1 [arg2 arg3]
 Puts the number of seconds since the start of execution in arg1. If
 arg2 and arg3 are given, arg2 is assumed to be the result of an earlier
 call to time, and the difference between arg1 and arg2 will be put in
 arg3. The arguments are real scalars.

 Note: This command uses the Fortran function cpu_time.

 See Also
 date

while
 Command Syntax
 while arg1 [operator arg2]
 block of commands
 end_while

 arg1 must be a real or integer matrix in the database. The first value
 in the matrix is used in the comparison.

 The simplest form is when only arg1 is specified. In this case, a value
 of 0 is considered false, and any other value is true.

 The more general case is when operator and arg2 are specified. Operator
 is one of the following FORTRAN conditional operators:

 .eq. .ne. .lt. .le. .gt. .ge.

 If arg2 is a real or integer matrix in the database, then the
 comparison is with the first element of arg2. If arg1 and arg2 are of
 different types, the conditional is evaluated as a real. If arg2 is not
 found in the database, it is interpreted as a number of the same type
 as arg1. In this case, only one space may separate the operator and
 arg2.

 While and do commands may have a combined nesting of 15 levels. The
 following restrictions apply:

 Do/while loops in separate files may not be active at one time.
 Specifically, if a do/while loop is in an input file, the filein
 command must not be issued from inside a do/while loop.

 A break_loop command causes the exit of an entire do/while loop, not
 just the "subloop" in the case of nested loops.

 A return command must not occur inside the body of a do/while loop. A
 return command may occur in an input file read inside a loop,
 however, to cause the input file to be exited.

Page of 77 186

 See Also
 break_loop do if

write
 Command Syntax
 write arg filename [-ext] [-f] [-tab] [-a]
 Write array arg to filename. If -ext is present, filename is assumed to
 be an extension to the project name, and the file project_name.filename
 will be written. The default file type is binary in which the
 information is written: array type (4 byte integer), dimension (4 byte
 integer), dimension integers specifying # rows, # cols, etc (each 4
 bytes), and then the data. If -f is specified, then a formatted write
 of the data only is done. If -tab is also specified, then the columns
 will be tab separated. If -a is specified, then the file will be
 appended.

 See Also
 read rm_file

Page of 78 186

2.3. Database Commands

clear
 Command Syntax
 clear
 Clear (initialize) the data base.

 See Also
 rm save

dir
 Command Syntax
 dir (or ll or ls) [arg] [-f] [c=?]
 dir (or ls) or ll produce a short or long listing of arrays in memory,
 including the dimensions.
 If arg is given, information on that array only is given.
 If -f is given, writes to output file. Otherwise, output is only to
 screen.
 The output for dir (ls) will be in c columns (default = 4)

 See Also
 memory

ll
 Command Syntax
 dir (or ll or ls) [arg] [-f] [c=?]
 dir (or ls) or ll produce a short or long listing of arrays in memory,
 including the dimensions.
 If arg is given, information on that array only is given.
 If -f is given, writes to output file. Otherwise, output is only to
 screen.
 The output for dir (ls) will be in c columns (default = 4)

 See Also
 memory

memory
 Command Syntax
 memory
 Prints data memory used in database

mv
 Command Syntax
 mv (rename) arg1 arg2
 Move (rename) arg1 to arg2. If arg2 exists, it is first removed.

 See Also
 rm

readdb
 Command Syntax
 readdb [arg]
 Reads the database in the file "arg.db" and adds to the existing
 database. If arg is not given, the file “project_name.db" is read.

 See Also
 save

Page of 79 186

rm
 Command Syntax
 rm (del) arg1
 Remove (delete) arg1 from database. Multiple arguments can be
 specified.

 See Also
 clear mv save

rm*
 Command Syntax
 rm* (del*) arg*
 Remove (delete) all members from database that begin with "arg". For
 example,

 rm* mat*

 will delete all members that start with "mat". Note that the last
 character of the argument must be *.

 The command syntax requiring * in both the command and the argument is
 a bit awkward. For example, it would be easier not to include the * in
 the argument. However, this command could be a bit dangerous in that it
 might make it easy to delete members accidentally. The syntax is meant
 to ensure that the intention is to delete everything that matches.

 See Also
 clear mv rm save

save
 Command Syntax
 save [arg1]
 Saves the data base to the file "arg1.db." If arg1 is not give, it is
 saved to the file “project_name.db."

 See Also
 quit readdb savequit

Page of 80 186

2.4. Matrix Commands

add
 Command Syntax
 add arg1 arg2 [arg3] [r=?] [n=?] [c=?] [m=?]
 Adds arg2 to arg1.
 If arg3 is input, result is put in new matrix arg3.
 If r is input, start adding at row r.
 If n is input, only add n rows.
 If c is input, start adding at column c.
 If m is input, only add m columns.

 Note: For 3-D arrays, only straight addition is supported. If any
 parameters are specified, they are ignored.

 See Also
 sub subcol sumcol

arpack
 Command Syntax
 arpack [#=?] [which=?] [maxit=?] [digits=?] [shift=?] [minv=?] [-freq]
 By using ARPACK routines, determine the eigenvalues and eigenvectors of
 the generalized eigenvalue problem:

 [K] {phi} = omega^2 [M] {phi}

 # = # of eigenvalues to determine
 which = Specify which of the Ritz values to compute
 LA - compute # smallest (algebraic) eigenvalues
 SA - compute # largest (algebraic) eigenvalues
 LM - compute # smallest (in magnitude) eigenvalues (default)
 SM - compute # largest (in magnitude) eigenvalues
 BE - compute # eigenvalues, half from each end of the
 spectrum. When # is odd, compute one more from the
 high end than from the low end.
 maxit = max. # of iterations (default = 30)
 digits = convergence tolerance = 10^-digits (default = 8)
 minv = minimum number of subspace vectors (default = min(2*#,#+8))
 shift = frequency shift (default = 0)
 -freq -> the frequencies (omega) are determined

 K and M are assumed to be symmetric matrices in sparse storage. The
 diagonals of K and M are in .sparse_diag and .sparse_diag2; the
 off-diagonals in .sparse_off and .sparse_off2, and the index arrays are
 .sparse_ptr and .sparse_indx. A diagonal M may be used, wherein .mstr is
 the vector of diagonal masses (do not provide .sparse_diag2 and
 .sparse_off2 in this case).

 The eigenvalues (frequencies) are put in .omega2 (.omega), depending on
 the parameter -freq. The eigenvectors are put in .phi.

 If K is singular then a shift must be applied prior to calling this
 command. For this command, the shifted eigenvalues are equal to the
 actual eigenvalues + shift. (That is, if a shift is needed for frequency
 analysis, use a positive shift.)

 The ARPACK routines were obtained from Rice University; for more

Page of 81 186

 information see http://www.caam.rice.edu/software/ARPACK/index.html

 See Also
 eigval jacobi ptosparse

array3d_slice
 Command Syntax
 array3d_slice arg1 arg2 [r=?] [c=?] [t=?]

 Extracts a "plane" of a 3-D array.

 arg1(n,m,p) is a 3-D array and arg2 is a matrix. arg2 is created as
 follows:

 If r is specified, arg2(1:m,1:p) = arg1(r,1:m,1:p)
 If c is specified, arg2(1:n,1:p) = arg1(1:n,c,1:p)
 If t is specified, arg2(1:n,1:m) = arg1(1:n,1:m,t)

 Hence, if t is specified, arg2 is "table" t from arg1. This can also be
 obtained from the cp command.

 See Also
 array3d_unslice cp

array3d_unslice
 Command Syntax
 array3d_unslice arg1 arg2 [r=?] [c=?] [t=?]
 Inserts 2-D matrix arg1 into a "plane" of 3-D array arg2. This
 operation is the opposite of array3d_slice. The two dimensions of arg1,
 n and m, must agree with two of the three dimensions of arg2 as
 follows.

 If r is specified, arg2(r,1:n,1:m) = arg1(1:n,1:m)
 If c is specified, arg2(1:n,c,1:m) = arg1(1:n,1:m)
 If t is specified, arg2(1:n,1:m,t) = arg1(1:n,1:m)

 Note: Only one of r, c, and t should be given. If two or more are
 specified, only one is used, in the priority order r, c, t.

 See Also
 array3d_slice

cp
 Command Syntax
 cp (copy) arg1 arg2 [r=?] [n=?] [c=?] [m=?] [table=?]

 Copies arg1 to arg2. For a straight copy of any dimension array, do not
 include any parameters. A partial copy of an array can be made by
 specifying parameters.
 If r is input, start copying at row r.
 If n is input, only copy n rows.
 If c is input, start copying at column c.
 If m is input, only copy m columns.
 If table is input, operate on one table of a 3-D array; i.e., extract
 the table.

Page of 82 186

 For 3D arrays, this command can only duplicate the array (no parameters
 specified) or extract one table, or part thereof.

 See Also
 cpdg put putdg

cpdg
 Command Syntax
 cpdg arg1 arg2 [r=?] [n=?]
 Copies the diagonal elements of arg1 to arg2.
 If r is input, start copying at row r.
 If n is input, only copy n rows.

 See Also
 cp put putdg

diag_mult
 Command Syntax
 diag_mult arg1 arg2 arg3
 Multiply arg1 times arg2. arg1 is a diagonal matrix stored as a vector.
 The result is stored in arg3. The dimension of arg1 must equal the
 number of rows of arg2.

 See Also
 mult tmult mult_elem

dim_reduce
 Command Syntax
 dim_reduce arg1 arg2 index=?

 Copies all but the last dimension of a multi-dimensional array. If arg1
 is an n-dimensional array, arg2 will be an (n-1)-dimensional array that
 is obtained by setting the last index of arg1 to the value specified by
 index. The default for index is 1.

eigval
 Command Syntax
 eigval [#=?] [maxit=?] [digits=?] [shift=?] [ss_size=?] &
 [rigid=?,?,?,?,?,? cg=?,?,? node_range,?,?] [-vec_init] &
 [-freq] [-disk] [-sparse] [-random] [seed=?]
 Eigenvalue solution by either subspace (SS) iteration or Jacobi method
 of the generalized eigenvalue problem:

 [K] {phi} = omega^2 [M] {phi}

 # = 0 -> use Jacobi and solve for all eigenvalues
 > 0 -> use SS to solve for # of lowest eigenvalues
 maxit = max. # of iterations (default = 30)
 digits = convergence tolerance = 10^-digits (default = 8)
 ss_size = number of subspace vectors (SS only; default=max(2#,#+8)
 shift = frequency shift (default = 0)
 rigid = six values, corresponding to 6 rigid body modes in
 global coordinates (SS iteration only)

Page of 83 186

 0 -> do not form corresponding rigid body mode
 1 -> form corresponding rigid body mode
 cg = point about which rigid modes are calculated
 (default = 0,0,0)
 node_range = range of nodes to calculate rigid modes
 (default is to include all nodes)
 -vec_init -> use #vecs initial vectors in matrix
 eigval_init(neq,#vecs)- SS only
 -freq -> the frequencies (omega) are determined
 -disk -> the factored and original stiffnesses will be swapped
 to/from disk for SS interation (profile only)
 -sparse -> a sparse stiffness matrix is used

 -random -> use a random number generator to create
 the starting vectors (SS iteration only)
 seed .ge. 0 -> seed for generator (default = 1)
 .lt. 0 -> use next random number

 K and M are assumed to be symmetric matrices. The default option is to
 use an upper profile storage scheme. In this case, K and M are assumed to
 be in .kstr and .mstr, respectively. The locations of the diagonal
 elements are assumed to be in .kdiag_loc. If a sparse storage option is
 chosen, then the diagonals of K and M are in .sparse_diag and
 .sparse_diag2; the off-diagonals in .sparse_off and .sparse_off2, and the
 index arrays are .sparse_ptr and .sparse_indx. In either case a diagonal
 M may be used, wherein .mstr is the vector of diagonal masses.

 The eigenvalues (frequencies) are put in .omega2 (.omega), depending on
 the parameter -freq. The eigenvectors are put in .phi.

 For subspace iteration, K and M are unchanged if there is no shift; if
 there is a shift, .kstr will be the shifted matrix.

 For both SS and Jacobi, if K is singular then a shift must be applied.
 For this command, the shifted eigenvalues are equal to the actual
 eigenvalues + shift. (In other words, for frequency analysis typically
 use a positive shift.)

 For the jacobi solution, M must be positive definite.

 See Also
 arpack jacobi ptosparse

extract
 Command Syntax
 extract arg1 arg2 c=? v=? [tol=?] [-eq -ne -gr -gt -le -lt]
 Extracts rows in arg1 for which the value (v=) in column (c=) matches
 the criterion:

 -eq -> equal to value +- tol (default)
 -ne -> not equal to value
 -ge -> greater than or equal to value
 -gt -> greater than value
 -le -> less than or equal to value
 -lt -> greater than or equal to value

 The result is put in arg2. A row vector is treated as a column vector.

Page of 84 186

 For complex numbers, value is complex but the comparison is done on
 absolute values, except for equality and inequality.

fft
 Command Syntax
 fft arg1 [-ferziger] [-ooura] [-forward] [-inverse]

 The default is to determine the forward (direct) Fourier transform of a
 function arg1. arg1 is replaced with the frequency coefficients. If
 -inverse is specified, the inverse transform is determined, in which
 case the input arg1 should be the frequency coefficients and the output
 arg1 is the time history.

 arg1 must be an N x m dimensional array of equally spaced function
 values. N is the number of sample points and m is the number of
 sequences to be transformed.

 Default Algorithm
 The default is to use fftpack available at netlib.org that was
 originally written by Paul N. Swarztrauber, as modified by P.
 Bjorstad (version 3, June 1979). The command creates the work array
 $fft_wsave, which must not be changed between calls to fft. That is,
 the inverse transform will use the previously determined $fft_wsave
 vector created by the forward transform. This array can be deleted if
 no further inverse transformations with the same value of N are to be
 done. This command assumes arg1 is a real matrix for a real function.

 Ooura Algorithm
 If option -ooura is specified, the Ooura FFT routines available at
 http://faculty.prairiestate.edu/skifowit/fft/ are used (July 2010).
 arg1 can be either double precision real or double precision complex.
 N must be a power of two. The work arrays $fft_ip and $fft_w are
 used, which can be deleted when they are no longer needed.

 Ferziger Algorithm
 If option -ferziger is specified, the FFT routine by Wouk based on
 the algorithm by Ferziger in Numerical Methods for Engineering
 Applicatons is used, but converted to double precision. The original
 code is available at http://www.netlib.no/netlib/misc/fft.f (July
 2010). arg1 is double precision complex. N must be a power of two. No
 work array is used.

 You should clearly understand the scaling, the convention, and the
 storage scheme that these algorithms use. A first step is to refer to
 the simple test file in the examples folder.

 See Also
 fft_helper

fft_helper
 Command Syntax
 fft_helper H P HP

 This is a special purpose function to multiply transfer functions H
 with frequency components P, with the result HP, which is stored in a
 form consistent with P.

Page of 85 186

 The use of this routine is designed for dyanamic structural analysis,
 where the work flow is as follows: 1) use the command fft to obtain the
 frequency coefficients P from the time history of the loading; 2)
 multiply the transfer functions H with the corresponding P, forming HP;
 3) use fft to obtain carry out an inverse Fourier transform to obtain
 the time history of the response.

 In theory both H and P are complex and the same size, in which case a
 simple element-by-element multiply is sufficient. But this is not
 usually the case. It is more likely that H is complex of dimension
 N/2+1, in which N is the number of points used for the discrete Fourier
 transform (this command requires that N is even). If the command fft
 with the default algorithm is used to obtain P, then the complex P is
 stored in a real matrix of dimension N. The storage scheme for P is
 revealed by the example fft in the folder distr_examples. This command
 will do the multiplication directly. The complex product is stored in
 the real matrix HP, using the same storage scheme as used for P. This
 is the storage scheme required by the default algorithm in the command
 fft to obtain the inverse Fourier transform.

 Multiple transfer functions can be processed at the same time. In
 summary, the input and output are as follows:

 H(N/2+1,#func) - complex, #func is the number of transfer functions
 P(N) - real
 HP(N,#func) - real

 N must be even.

 A typical analysis would then involve three commands:

 fft P
 fft_helper H P HP
 fft HP -inverse

 In the first command, input P is the loading sampled at N equidistant
 time points and output P is the frequency components. The second
 command is as explained above. In the third command, output HP is the
 time history of the response at the N equidistant time points.

 See Also
 fft

ftopro
 Command Syntax
 ftopro arg1 arg2 arg3
 Store "full" symmetric matrix arg1 in row vector arg2 using upper
 profile storage. arg3 is the vector of diagonal locations in arg2.
 Length of arg3 is arg1_rows + 1. Length of arg2 is arg3(arg1_rows+1) -
 1.

 See Also
 ptoful pmult

Page of 86 186

gauss
 Command Syntax
 gauss arg1 arg2 [-pp] [#digits=?]
 Uses elimination (LU factorization) to solve a system of linear
 equations (real or complex). arg1 is the coefficient (square) matrix
 and arg2 is the "RHS." The solution is put in arg2.

 For real matrices, a warning is printed if the number of "digits" lost
 in a diagonal is greater than or equal to #digits (default = 7).

 If -pp is specified, partial pivoting with implicit scaling is carried
 out; otherwise, elimination without pivoting is done.

 For large, symmetric matrices, use psolve.

 See Also
 ftopro invert psolve

get_dim
 Command Syntax
 get_dim arg1 arg2 [-rows] [-cols]
 Gets the dimensions of arg1 and stores them in arg2. If -rows is
 present, only the number of rows is stored. If -cols is present, only
 the number of columns is stored.

ident
 Command Syntax
 ident (identi or identc) arg [r=?] [c=?]
 Transform matrix arg such that all terms are zero except arg(i,i), the
 "diagonals", which are one. If arg is square, it becomes an identity
 matrix.
 If r and c are input, integer (identi), real (ident), or complex
 (identc) matrix arg(r,c) is created.

 See Also
 input zero

input
 Command Syntax
 input (inputi or inputch or inputc) arg [r=?] [c=?] [-null]
 Input a real (input), integer (inputi), character (inputch) or complex
 (inputc) matrix or vector.
 r is the number of rows (default = 1).
 c is the number of columns (default = 0).

 For character matrices and vectors, the rows are null-terminated if the
 parameter -null is specified.

 See Also
 ident input3d zero

input3d
 Command Syntax

Page of 87 186

 input3d (input3di or input3dc) arg [r=?] [c=?] [t=?]
 Input a real (input3d), integer (input3di), or complex (input3dc) 3-D
 array with dimensions (r,c,t).
 r is the number of rows (default = 1).
 c is the number of columns (default = 1).
 t is the number of "tables" (default = 1).

 A 3-D array is a collection of 2-D matrices, each of which is considered
 a "table." That is, arg(:,:,1) is table 1, arg(:,:,2) is table 2, and so
 forth. Each table is input as a 2-D matrix (see the command input), and
 the tables are input sequentially.

 See Also
 Input

interpolate
 Command Syntax
 interpolate tin fin tout fout [prepad=?] [postpad=?]
 Interpolate using the data set (tin,fin) to create (tout,fout).

 The input data set is defined by tin(n) and fin(n,nfunc), where tin is
 a vector of real "time" values, fin is a matrix of real or complex
 function values. The output values are defined at the discrete "times"
 specified in tout(N). The real (or complex) vector fout(N,nfunc) is
 created based on linear interpolation of the data in [tin,fin].

 If the range of tout is larger than the range of tin, the output values
 are pre-padded and/or post-padded. The default is to prepad with the
 1st value in fin and to postpad with the last value in fin. If a value
 is given for the argument prepad, prepadding will use that value. If a
 value is given for the argument postpad, postpadding will use that
 value. (Use these options to prepad and postpad with 0, for example.)

 It is assumed that tin and tout are in ascending order.

 See Also
 series

invert
 Command Syntax
 invert arg1 arg2
 The inverse of arg1 is calculated and stored in arg2. Straight Gauss
 elimination is used. The matrix arg1 is modified. For large, symmetric
 matrices, use psolve.

 See Also
 ftopro psolve

jacobi
 Command Syntax
 jacobi k m phi lambda [d=?] [maxit=?] [digits=?] [-freq]
 Eigenvalue solution by Jacobi method for the generalized eigenvalue
 problem:

 [K] {phi} = lambda [M] {phi}

Page of 88 186

 where K and M are symmetric, square, positive definite matrices, which
 will be modified, and

 phi = matrix of all eigenvectors (to be created)
 lambda = vector of all eigenvalues (to be created)
 d = 0 -> mass matrix is input as 2-D matrix(default)
 = 1 -> diagonal mass "vector" (not implemented)
 maxit = maximum # of iterations (default = 30)
 digits = # digits accuracy in eigenvalues (default = 8)
 -freq = if present, then lambda is the square root of the
 eigenvalues.

 See Also
 Eigval

join
 Command Syntax
 joinh (or joinv) arg1 arg2 arg3
 arg3 is formed by joining (concatenating) arg1 and arg2
 joinh (horizontal joining) puts the matrices "side-by-side."
 joinv (vertical joining) puts arg1 "on top of" arg2.

max
 Command Syntax
 max arg1 arg2 [c=?] [-abs]
 Finds the maximum value in column c=? of arg1; the corresponding row is
 put in vector arg2. The default is c=1. If the flag -abs is present,
 the element with the maximum absolute value is found. If arg1 is a row
 vector, it is treated as a column vector.

 See Also
 min norm

min
 Command Syntax
 min arg1 arg2 [c=?]
 Finds the minimum value in column c=? of arg1; the corresponding row is
 put in vector arg2. If arg1 is a row vector, it is treated as a column
 vector.

 See Also
 max

mult
 Command Syntax
 mult (or tmult) arg1 arg2 arg3
 For mult, arg3 = arg1 * arg2
 For tmult, arg3 = Transpose(arg1) * arg2

 See Also
 mult_col mult_elem scale

Page of 89 186

mult_col
 Command Syntax
 mult_col arg1 arg2 arg3
 Multiply the columns of arg1 and the columns of arg2, and store the
 result in the row vector arg3. Hence, arg3(i) is the dot product of
 columns i of arg1 and arg2. The dimensions of arg1 and arg2 must be
 identical.

 See Also
 mult mult_elem

mult_elem
 Command Syntax
 mult_elem arg1 arg2 [arg3] [-inv]
 Multiply each element of arg1 with the corresponding element of arg2,
 and store the result in arg3. If arg3 is not given, the result is
 stored in arg1. If -inv is specified, then the elements of arg1 are
 divided by arg2. The dimensions of arg1 and arg2 must be identical.

 See Also
 mult mult_col

norm
 Command Syntax
 norm arg1 arg2 [-max] [-l2]
 Finds the vector "norm" of the columns of arg1; results are put in
 vector arg2. The default is to find the maximum value in each column.
 If the flag -max is present, the maximum absolute value of the elements
 is found. Otherwise, if the flag -l2 is present, the square root of the
 sum of the squares is found. If arg1 is a row vector, it is treated as
 a column vector.

 See Also
 sumcol

pmult
 Command Syntax
 pmult arg1 arg2 arg3 arg4
 Multiply arg1 * arg2 = arg3, where arg1 is a symmetric matrix stored in
 upper profile form. arg4 is the vector of diagonal locations in arg1.
 Length of arg4 is arg2_rows + 1

 See Also
 ptoful ftopro

print
 Command Syntax
 print or printf (p or pf) arg1 [r=?] [c=?] [cols=?] [l=?] &
 [-nohead] [row#=?] [-f] [form=format] [-phase] [table=?]

 Prints arg1. Printing begins at row r and column c (default = 1). If l
 is given, then l lines will be scrolled at a time. If -nohead is given,
 then the usual row/column headings will not be printed. The default is
 to print every fifth row number (1, 5, 10, 15, etc.) in the heading;

Page of 90 186

 this can be overridden by specifying a different value with row#=. If
 -f is specified, then printing is to the output file only (and not to
 the screen). In this case, scrolling is not done. If -phase is
 specified and arg1 is complex, then the magnitude and phase angle
 (degrees) will be printed rather than the real and imaginary
 components.

 The default output formats are ni6 and 1pne12.4, where n=12, n=6, or
 n=3 for integer, real, and complex matrices, respectively. If cols is
 specified, n=cols. (pf prints using nf12.5 format.) Alternative
 formats can be specified by the parameter form=. In this case, format
 must be a valid FORTRAN format, enclosed in (), without any embedded
 blanks and with a maximum length of 160 characters. If a format is
 specified, the parameters cols=, l=, and -nohead are ignored
 (row/column headings are not printed).

 If arg1 is a 3 dimensional array, then it is printed as a sequence of 2
 dimensional arrays, called "tables." For example, table 1 is
 arg1(*,*,1). If table is specified, only that table is printed. For
 dimensions greater than 4, only the first table is printed.

 See Also
 xprint

psolve
 Command Syntax
 psolve arg1 arg2 arg3 [digits=?]
 Solves arg1 * arg2 = arg2, where arg1 is a symmetric matrix stored in
 upper profile form. arg2 is the "load" vector, with neq rows, which is
 replaced by the solution. arg3 is the vector of diagonal locations in
 arg1. Length of arg3 is neq + 1. The size of arg1 = arg3(neq+1) - 1. A
 warning is printed if the loss of precision in a diagonal element is
 greater than or equal to digits (default = 7).

 See Also
 ftopro gauss invert pmult ptoful

psolve16

 Compiler does not support real*16

ptoful
 Command Syntax
 ptoful arg1 arg2 arg3
 Put symmetric matrix arg1 stored in profile form into the square matrix
 arg2. arg3 is the vector of diagonal locations in arg1. The length of
 arg3 is assumed to be the # diagonals of arg1 + 1. The dimensions of
 arg2 are arg2(#diag,#diag).

 See Also
 ftopro gauss invert pmult

ptosparse
 Command Syntax

Page of 91 186

 ptosparse arg1 arg2 [arg3]
 Put symmetric matrix arg1 stored in profile form, with diagonal
 locations specified in arg2, into sparse matrix. The diagonals are
 stored in .sparse_diag and the nonzero off-diagonals are stored in
 .sparse_off. The number of nonzeroes in each row are stored in
 .sparse_ptr, and the column number for each nonzero is stored in
 .sparse_indx. The number of nonzero off-diagonals is stored in
 .sparse_size. If arg3 is specified, then it is interpreted as a matrix
 with the same profile as arg1. Its values are stored in .sparse_diag2
 and .sparse_off2.

 See Also
 sparse_mult

put
 Command Syntax
 put arg1 arg2 [r=?] [c=?]
 Puts arg1 into arg2.
 If r is input, starts putting at row r.
 If c is input, starts putting at col c.

 See Also
 putdg

putdg
 Command Syntax
 putdg arg1 arg2 [r=?]
 Puts arg1 into diagonals of arg2.
 If r is input, starts putting at row r.

 See Also
 put

scale
 Command Syntax
 scale arg1 [arg2 e=?,?] [v=?] [-inv]
 Multiplies arg1 by the scalar arg2(e1,e2) or by the value v. If -inv is
 present, multiplies by the inverse of the scalar.

 See Also
 mult

series
 Command Syntax
 series arg x=x1,x2 [inc=?] [w=?] [max=?]
 Creates a real data series starting at x1 and ending at x2. The series
 is put in the row vector arg. The initial spacing is inc (default=1);
 the spacing between points 2 and 3 is inc * w, and the spacing between
 points n and n+1 is inc * w^(n-1). However, the spacing between the
 last two points may differ, as the last value will not be larger than
 x2. If w < 1, care must be taken to ensure that the series will reach
 x2. However, at most max (default=100000) number of points are
 generated. By specifying a large enough x2, one can generate a series
 with exactly max points.

Page of 92 186

 See Also
 series2d

series2d
 Command Syntax
 series2d arg p1=x1,y1,z1 p2=x2,y2,z1 p3=x3,y3,z1 p4=x4,y4,z1 &
 [w=?,?] [n=?,?] [dim=?]

 Creates a real data series on a 2-d grid, which is put in the matrix
 arg(n1*n2,dim). The series data can be viewed as points in an X-Y-Z
 coordinate system, which are generated within the "quadrilateral"
 defined by the corner points pj with coordinates (xj,yj,zj), j=1,4; see
 sketch below. A grid of n1 x n2 points is generated, as follows. Linear
 generation is used to generate n1 points between p1 and p2, and between
 p3 and p4, based on w1. Linear generation also is used to generate n2
 points between p1 and p3, and between p2 and p4, based on w2. The
 points generated between p1 and p3 are connected through linear
 generation, based on n1 and w1, with the points generated between p2
 and p4. A gridlike ordering of points is carried out such that p1 is
 point 1, p2 is point n1, p3 is point n1*(n2-1)+1, and p4 is point
 n1*n2. If n2 is zero, then generation is along the line p1 to p2 only.

 dim can be 1, 2 or 3 (default=2). Only the first dim coordinates are
 kept in arg.

 If arg exists, and if the # rows = n1*n2 and the # columns is at least
 dim, then the data are put in the first dim columns of the existing
 matrix.

 Linear generation is defined such that the initial spacing between
 points is equidistant unless the positive weight w (default=1) is
 specified, in which case the spacing between points k and k+1 is equal
 to w times the spacing between k-1 and k.

 An alternative type of generation can be carried out using the commands
 nodes and node_gen.

 p3 p4
 X-----------------------X
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 X-----------------------X
 p1 p2

 See Also
 series

seti
 Command Syntax
 seti (setr) arg v=? or

Page of 93 186

 setch arg s=? [-null]
 Set scalar arg to value. Seti and setr set integer and real scalars,
 respectively, equal to the value v. Setch sets a character string (a
 row matrix with a maximum length of 80, no blanks allowed) specified by
 s. If -null is present, the character string in arg will be
 null-terminated.

 This command is more convenient than input and inputi for scalars and
 inputch for character constants.

sort
 Command Syntax
 sort arg1 [arg2] [key=?,?,?] [-reverse]
 Sorts arg1 in ascending order. A maximum of three sort keys (columns on
 which sorting is done) may be specified by the identifier key; the
 first value is the first key, etc. If no keys are specified, the first
 key is taken to be column 1. The result is put in arg2, if it is given;
 otherwise arg1 is changed. If -reverse is present, sort is in
 descending order. If arg1 is a row vector, it is sorted as a column
 vector.

sparse_matrix_clean
 Command Syntax
 sparse_matrix_clean
 Removes arrays created by the command ptosparse as well as some arrays
 that are created internally as part of the sparse solver. Arrays that
 will be removed if they exist are: .sparse_mmik, .sparse_mmim,
 .sparse_mmfn, .sparse_addr, .sparse_ptr, .sparse_indx, .sparse_diag,
 .sparse_diag2, .sparse_off, .sparse_off2, .sparse_ordr, and
 .sparse_size.

 See Also
 lsolve ptosparse

sparse_mult
 Command Syntax
 sparse_mult arg1 arg2
 Premultiplies the matrix arg1 by a (symmetric) sparse matrix and puts
 the result in arg2. The sparse matrix is assumed to be in a form
 compatible with the command ptosparse, and the arrays .sparse_diag,
 .sparse_off, .sparse_ptr, .sparse_indx, and .sparse_size are assumed to
 exist. The array .sparse_ordr defines the reordering of the matrix; if
 it does not exist, it is assumed that the matrix has not been
 reordered.

 See Also
 ptosparse

split
 Command Syntax
 split arg1 [arg2] [c=?]

 Splits arg1 based on columns and joins the matrices vertically into
 arg2, with c columns (default=1). For example, let arg1 have 10 rows

Page of 94 186

 and 8 columns and let c=4. Then arg2 will have 20 rows and 4 columns,
 such that the first 10 rows will be the same as the first 4 columns of
 arg1, and the last 10 rows will be the same as the last 4 columns of
 arg1. If arg2 is not given, then arg1 is replaced with the new matrix.
 If c does not divide evenly into the # of columns of arg1, then the
 additional columns in the last rows of arg2 will be zero. If c is
 greater than or equal to the # of columns of arg1, a simple copy of
 arg1 is done. This command could be used to form a column vector from a
 row vector by specifying c=1. (The transpose command - trans - is
 preferred in this case.)

 See Also
 unsplit

sub
 Command Syntax
 sub arg1 arg2 [arg3] [n=?] [r=?] [c=?] [m=?]
 Subtracts arg2 from arg1.
 If arg3 is input, result is put in new matrix arg3.
 If r is input, start subtracting at row r.
 If n is input, only subtract n rows.
 If c is input, start subtracting at column c.
 If m is input, only subtract m columns.

 See Also
 subcol add sumcol

subcol
 Command Syntax
 subcol arg1 arg2 arg3 [c=?]
 Subtracts arg2 from arg1.
 Result is put in new matrix arg3. If c is input, start subtracting at
 column c. This command is used to subtract all but the first c-1
 columns of two equal size matrices.

 See Also
 sub add put putdg

sumcol
 Command Syntax
 sumcol arg1 arg2 [-abs]
 Sums the columns of arg1; results are put in vector arg2. If the flag
 -abs is present, the absolute values of the elements are summed. If
 arg1 is a row vector, it is treated as a column vector.

 See Also
 add sub subcol

to_complex
 Command Syntax
 to_complex arg1 [arg2] or
 to_complex2 arg1 arg2 arg3
 The command to_complex converts agr1 into a complex matrix. arg1

Page of 95 186

 becomes the real part of arg2, if it is given; otherwise arg1 is
 replaced.

 The command to_complex2 creates the complex array agr3 using arg1 as
 the real part and arg2 as the imaginary part.

 See Also
 to_int to_real

to_complex2
 Command Syntax
 to_complex arg1 [arg2] or
 to_complex2 arg1 arg2 arg3
 The command to_complex converts agr1 into a complex matrix. arg1
 becomes the real part of arg2, if it is given; otherwise arg1 is
 replaced.

 The command to_complex2 creates the complex array agr3 using arg1 as
 the real part and arg2 as the imaginary part.

 See Also
 to_int to_real

to_int
 Command Syntax
 to_int arg1 [arg2] [-trunc]
 Converts arg1 into an integer matrix. The values in arg1 are converted
 to the nearest 4 byte integers and placed in arg2, if it is given;
 otherwise arg1 is replaced. If -trunc is given, the values are
 truncated instead (for complex arg1, the values are always truncated).

 See Also
 to_complex to_real

to_real
 Command Syntax
 to_real arg1 [arg2]
 Converts agr1 into a real matrix. The values in arg1 are converted to 8
 byte reals and placed in arg2, if it is given; otherwise arg1 is
 replaced. If arg1 is complex, the real part is returned.

 See Also
 to_complex to_int

to_real16
 Command Syntax
 to_real16 arg1 [arg2]
 Converts agr1 into a real*16 matrix. The values in arg1 are converted
 to 16 byte reals and placed in arg2, if it is given; otherwise arg1 is
 replaced.

 Note: Only limited support is provided for real*16 data types.

 See Also

Page of 96 186

 psolve16 to_complex to_int to_real

to_vector
 Command Syntax
 to_vector arg1

 Converts a matrix with only one dimension greater than 1 to an
 N-dimensional vector. For example, A(N,1) and A(1,N) will both be
 converted to A(N).

tmult
 Command Syntax
 mult (or tmult) arg1 arg2 arg3
 For mult, arg3 = arg1 * arg2
 For tmult, arg3 = Transpose(arg1) * arg2

 See Also
 mult_col mult_elem scale

trans
 Command Syntax
 trans arg1 [arg2]
 Transposes arg1 to arg2, if it is given. Otherwise, replaces arg1 with
 its transpose.

unsplit
 Command Syntax
 unsplit arg1 [arg2] [r=?]

 Unsplits arg1 based on rows and joins the matrices horizontally into
 arg2, with r rows (default=1). For example, let arg1 have 20 rows and 4
 columns and let r=10. Then arg2 will have 10 rows and 8 columns, such
 that the first 4 columns will be the same as the first 10 rows of arg1,
 and the last 4 columns will be the same as the last 10 rows of arg1. If
 arg2 is not given, then arg1 is replaced with the new matrix. If r does
 not divide evenly into the # of rows of arg1, then the additional rows
 in the last columns of arg2 will be zero. If r is greater than or equal
 to the # of rows of arg1, a simple copy of arg1 is done. This command
 could be used to form a row vector from a column vector by specifying
 r=1. (The transpose command - trans - is preferred in this case.)

 See Also
 split

unwrap
 Command Syntax
 unwrap arg1 [arg2] [r=?]

 "Unwraps" the rows of arg1 puts the result into arg2, which will have r
 rows (default=1). For example, let arg1 have 20 rows and 4 columns and
 let r=10. Then arg2 will have 10 rows and 8 columns, such that the
 first row will be the same as the first 2 rows of arg1, row 2 will be
 the same as rows 3 and 4 of arg1, etc. If arg2 is not given, then arg1

Page of 97 186

 is replaced with the new matrix. If r is greater than or equal to the #
 of rows of arg1, a simple copy of arg1 is done. Otherwise, r must
 divide evenly into the number of rows in arg1.

 See Also
 split unsplit wrap

wrap
 Command Syntax
 wrap arg1 [arg2] [c=?]

 "Wraps" the rows of arg1 and puts the result into arg2, which will
 have c columns (default=1). For example, let arg1 have 10 rows and 8
 columns and let c=4. Then arg2 will have 20 rows and 4 columns, such
 that the first 2 rows will be the same as the first row of arg1, rows 3
 and 4 will be the same as the second row of arg1, etc. If arg2 is not
 given, then arg1 is replaced with the new matrix. If c does not divide
 evenly into the # of columns of arg1, then the additional columns in
 arg2 will be zero. If c is greater than or equal to the # of columns of
 arg1, a simple copy of arg1 is done.

 See Also
 split unsplit unwrap

xprint
 Command Syntax
 xprint (xp) arg1 [cols=?] [row#=?]
 Expanded print of arg1 with virtually all significant digits. If cols
 is given, then a maximum of cols columns will be printed at a time.
 row# sets the increment used to print row headings (default = 5).

 If t is given, arg is a 3-D array rather than a matrix, but the rules
 above apply.

 See Also
 print

zero
 Command Syntax
 zero (zeroi or zeroc) arg [v=value] [r=? c=?? t=?]
 Zeroes arg.
 If value is given, the matrix is filled with value rather than zero. If
 r or c is input, matrix arg(r,c) is created of type real (zero),
 integer (zeroi), or complex (zeroc).

 See Also
 input ident

2.5. Mathematical Functions

abs
 Command Syntax
 abs arg1 [arg2] [x=?] [y=?] [c=?]
 Takes absolute value of elements in arg1. The result is put in arg2, if

Page of 98 186

 it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

bessel_j or bessel_y
 Command Syntax
 bessel_j (or bessel_y) [n=] arg1 [arg2] [x=?] [y=?] [c=?]
 Takes Bessel function of 1st kind (bessel_j) or Bessel function of the
 2nd kind (bessel_y) of order n of elements in arg1. The result is put
 in arg2, if it is given; otherwise the values in arg1 are replaced.

 n=0 is the default

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

conjugate
 Command Syntax
 conjugate arg1 [arg2] [x=?] [y=?] [c=?]
 Calculates the complex conjugates of elements in arg1. The result is
 put in arg2, if it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

epsilon
 Command Syntax
 epsilon arg1 arg2
 Returns a positive small value relative to 1 of the same real kind as
 arg1. arg2 will be a scalar.

erf
 Command Syntax
 erf (or erfc or erfc_scaled) arg1 [arg2] [x=?] [y=?] [c=?]
 Takes error function (erf), complementary error function (erfc) or the
 scaled complementary error function (erfc_scaled) of elements in arg1.
 The result is put in arg2, if it is given; otherwise the values in arg1
 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

Page of 99 186

exp
 Command Syntax
 exp arg1 [arg2] [x=?] [y=?] [c=?]
 Calculates the exponential of elements in arg1. The result is put in
 arg2, if it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

gamma
 Command Syntax
 gamma arg1 [arg2] [x=?] [y=?] [c=?]
 Takes the gamma function of elements in arg1. The result is put in
 arg2, if it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

log
 Command Syntax
 log arg1 [arg2] [x=?] [y=?] [c=?]
 Calculates the natural log of elements in arg1. The result is put in
 arg2, if it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

log10
 Command Syntax
 log10 arg1 [arg2] [x=?] [y=?] [c=?]
 Calculates the common log of elements in arg1. The result is put in
 arg2, if it is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

pi
 Command Syntax
 pi arg1
 Creates the scalar arg1 with the value of pi.

Page of 100 186

power
 Command Syntax
 power arg1 [arg2] [p=?] [-r] [x=?] [y=?] [c=?]
 Raises each element in arg1 to the power p (default = 2). If -r is
 present, the power p is real; otherwise, it is an integer (default).
 The result is put in arg2, if it is given; otherwise the values in arg1
 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

sqrt
 Command Syntax
 sqrt arg1 [arg2] [x=?] [y=?] [c=?]
 Takes square root of elements in arg1. The result is put in arg2, if it
 is given; otherwise the values in arg1 are replaced.

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

trig
 Command Syntax
 "trig_function" arg1 [arg2] [x=?] [y=?] [c=?]
 Evaluates the function "trig_function" for each element in arg1.The
 result is put in arg2, if it is given; otherwise the values in arg1 are
 replaced. Valid functions are

 cos sin tan asin acos atan sinh cosh tanh

 The default is to operate on every element in arg1. However, to operate
 on a single column only, use the parameter x to specify the column
 number. If x is specified and arg2 is not specified, the result is put
 in column y of arg1 (default=x). If c is specified and x is not, the
 first c-1 columns are the same as arg1.

Page of 101 186

2.6. Finite Element Commands

bcid
 Command Syntax
 bcid [#=?] [r=?,?,?...] [print=?]
 n=node_no r=?,?,?... [print=?] [inc=inc]

 Specifies restraints on nodal degrees-of-freedom (DOFs).

 # = number of DOFs per node (default = 6)
 r = comma-separated string of 0's and 1's, # values long
 0 -> DOF is free (value to be calculated)
 1 -> DOF is "fixed", i.e., value is set to 0
 print = print code
 0 -> displacements will not be printed by pdisp
 1 -> displacements will be printed by pdisp (default)

 Values specified on the bcid line are nodal defaults. The most common
 situation is when there are 6 DOFs per node. r=0,0,0,0,0,0 would then
 correspond such that 1 to 3 are for the translations along the X, Y,
 and Z axes, and 4 to 6 are the corresponding rotations. For example,
 r=0,0,1,1,1,1 would imply only X and Y displacements are non-zero. Some
 elements require more than 6 DOFs per node; this can be specified by
 #=. Note that if a number less than 6 is specified, 6 will be used.
 That is, there are at least 6 DOFs per node.

 Subsequent lines can be used to specify different values for specific
 nodes. However, all nodes have the same maximum number of DOFs, which
 is stored in .#dofs_per_node. If a restraint value < 0 is specified
 instead of a 0 or 1, then the corresponding displacement for the node
 is the same as for node number |value|. Generation occurs if two
 records do not have sequential nodes and inc, the node number
 increment, is not 0. The generated nodes have the same restraints as
 the last node entered. Nodes need not be input in sequence.

 End input with a blank line.

 The displacement restraints are stored in array .bcid(#,#nodes), which is
 required by the num_eqs or form_k command to number the equations, and
 the pdisp command to print displacements. The print codes are stored in
 .bcid_print(#nodes).

 The term "displacement" is used for the nodal variables, but actually it
 can be any quantity (e.g., temperature, etc.).

 See also
 form_k nodes num_eqs pbcid pdisp

body_frc2d
 Command Syntax
 body_frc2d n=?
 n=distribution# c=coefficients

 Input polynomial coefficients used to define n "distributions" of 2d
 body forces for elements in a plane. A maximum of a 5th degree
 polynomial in two variables (21 coefficients) is allowed. The
 coefficients are stored in the array .body_f2d(21,n). These can then be

Page of 102 186

 used by elements to define body forces.

 End input with a blank line.

 See Also
 d2l3to9 pbody_frc2d

check_diag
 Command Syntax
 check_diag arg1 arg2 [zero=?] [v=?] [-noprint]
 Check the diagonal elements of matrix arg1, stored in profile form, for
 zeroes. arg2 is the vector of diagonal locations in arg1. The length of
 arg2 is assumed to be the # diagonals of arg1 + 1. If zero (default =
 0.0) is given, then any diagonal with an absolute value less than zero
 is replaced by v (default = 1.0). The equation numbers corresponding to
 the changed diagonals are reported unless the the flag -noprint is
 given. This command is useful to prevent a stiffness matrix from being
 singular as a result of "unconnected" nodes.

 See Also
 form_k

conc_deck_loads
 Command Syntax
 conc_deck_loads
 element=? f=? dist=? [DG=?] [y=?]

 Input vertical concentrated deck loads for pontoon bridge element.

 element is the element number on which the load acts
 f is the load magnitude
 dist is the distance, from the beginning of the element, to the load
 DG is the vertical distance from the deck to the center of gravity of
 the load
 y is the transverse offset from the center line of the element

 End input with a blank line.

 As many concentrated loads as desired may be entered for a given element.
 They are accumulated.

 Concentrated load data are stored in the array .pbridge_conclds(5,*), in
 the order element #, f, dist, DG, y.

 This command, if used, must be given after the elements are defined with
 the pbridge command.

 See Also
 distr_deck_loads pbridge pdeck_loads

consolidation
 Command Syntax
 consolidation steps=? [dt=?] [theta=?] [dprin=?] [fprin=?] [k=?] [time=?]
 [history=?]

Page of 103 186

 Consolidation time integration command
 steps = number of time steps
 dt = time step (default is to use existing time step)
 theta = 2-step integration parameter (default=1.0 -> forward Euler)
 dprin = print flag for nodal displacements
 = 0 -> not printed from command (default)
 = N -> print every N time steps
 fprin = print flag for element state
 = 0 -> not printed from command (default)
 = N -> print every N time steps
 k = 0 -> form stiffness by calling routine form_k (default)
 = 1 -> use existing stiffness
 time = initial time (default = 0)
 history = time increment at which results are saved (see below)

 A form_k command must precede the first consolidation command. It is also
 important that the nodef command follow the form_k command.

 The increment in external loads is determined from the .load_pat array
 created by the command nodef. For this command, the load "patterns" refer
 to the time step. Imposed displacements and pressures are specified by the
 imposed_displ command. Again, for this case the pattern number is the time
 step. This command interprets the values specified in the nodef and the
 imposed_displ command as incremental values.

 At each time step, the calculated displacements and pressures are placed in
 .disp. If history is not zero, then the displacements at every history time
 units (e.g., seconds) is saved in .disp_history(neq+1,*). The last value in
 each column is the time of the results. For each node, DOF 4 is the
 pressure.

 Note: Using an existing stiffness (k=1) should only be done if the time
 step and theta parameter are unchanged and the degrees-of-freedom with
 imposed displacements have not changed.

 See Also
 imposed_displ nodef

cp_tables
 Command Syntax
 cp_tables t=? maxdrafts=? maxtrims=?
 t=? submerged=?
 1st row is trim angles in degrees
 draft Cp1 Cp2 etc.

 Input tables of drag coefficients, Cp, for pbridge element. The command
 line parameter t specifies the number of tables. maxdrafts and maxtrims
 are the maximum number of drafts and trims that will be input,
 considering all tables. The first input record for a table is the table
 number and the value of Cp when the element is submerged (draft and/or
 trim is outside the range of the table). The subsequent records contain
 the draft, and then up to maxtrims Cp values for that draft. The drafts
 and trims must be in increasing numerical order.

 The Cp tables are stored in the array .cp_tables(maxdrafts+2,maxtrims+1,t).
 The last row in the matrix contains the actual number of drafts and trims
 for that table, as well as the submerged Cp value. Therefore, there are at

Page of 104 186

 least 3 columns in .cp_tables.

 End input with a blank line.

current_velocity
 Command Syntax
 current_velocity [v=?] [angle=?] [-variable]
 [n=node# v=? angle=? [inc=?]]

 v = current speed
 angle = angle in degrees the current velocity vector makes with
 the global X-axis, measured counterclockwise

 This command defines the current velocity to be used with the pontoon
 bridge element (pbridge). For a uniform current, the speed and angle are
 specified on the command line. If -variable is present, a current that
 varies in the horizontal (X-Y) plane can be specified. In this case, the
 current speed and angle at each node with a nonzero current are specified
 on records immediately following the command record. Generation occurs if
 two records do not have sequential nodes and inc, the node number
 increment, is not 0. The current for the generated nodes are interpolated
 linearly from the current specified on the previous record and the present
 record. The interpolation is based on number of nodes generated, not on
 nodal coordinates. For example, if the current is to be generated for 1
 node, its speed and angle are the averages of the previous values and the
 present values.

 For a uniform current, the data are stored in .current_velocity(2). For a
 varying current, the data are stored in .current_velocity(2,#nodes). In
 either case, angles are converted to radians prior to storage.

 For a variable current, the nodes must be defined prior to this command,
 and the command is terminated by a blank line.

 See Also
 pbridge pcurrentvelocity

dampers
 Command Syntax
 dampers [-noecho]
 n=node_no c=cx,cy,cz,cxx,cyy,czz [inc=]

 Reads nodal dampers.

 If -noecho is specified, the data will not be echoed to the output
 file.

 cj and cjj are the nodal dampers with respect to the j axis.
 Generation occurs if two records do not have sequential nodes and
 inc, node number increment, is greater than 0. The generated nodal
 data will have the same value as the record with inc.

 Dampers for repeated nodes are accumulated.

 End input with a blank line.

Page of 105 186

 The data are stored in the array .dampers_inp(7,*), in the order node #,
 6 damping components.

 The nodal dampers are assembled into the structure damping by the form_c
 command.

 See Also
 form_c pdamper

pdampers
 Command Syntax
 pdampers

 Print input nodal dampers.

 See also
 dampers

direct_th
 Command Syntax
 direct_th arg1 dt=? endtime=? [-linear] [damping=?,?] [begintime=]
 [save_disp=?] [save_restart=?] [beta=] [gamma=] [conv=?,?]
 [maxit=?] [k_iter=?] [-morison] [-strict_conv]
 [conv_option=1]
 Determine the direct time history response.

 arg1 = the time function (nptsx2 matrix)
 dt = time step
 endtime = simulation time
 -linear = response is linear; no iteration (see below)
 damping = mass and stiffness coefficients for Rayleigh damping
 begintime = time to begin the simulation (default=0)
 save_disp = integer to specify that the displ. are saved every
 disp_save time steps (default=1)
 save_restart= integer to specify that the displ., velocities and
 accelerations are saved every save_restart time steps
 (see below)
 beta = coefficient in Nemark method (default=1/4)
 gamma = coefficient in Nemark method (default=1/2)
 conv = convergence tolerances on displacement and forces
 (see below)
 maxit = maximum # of iterations within a time step (default=10)
 k_iter = # of iterations with constant stiffness (default=2)
 -morison = determine incoming wave velocities and accelerations
 -strict_conv= requires force and displacement convergenece
 conv_option = if specified, then "small" displacements are ignored
 for convergence

 This command integrates the equations of motion directly, using Newmark's
 method. The default beta, gamma coefficients correspond to the
 unconditionally stable constant average acceleration method. The command
 assumes the stiffness matrix is in .kstr, in profile storage, and the mass
 matrix is in .mstr and is either diagonal or in profile storage. The
 damping matrix is in .cstr and can be either diagonal or in profile
 storage. If it does not exist, the values specified by damping are used to
 form a Rayleigh damping matrix. The first value for damping is the mass

Page of 106 186

 coefficient, and the second value is the stiffness coefficient. Provide
 non-zero initial displacements in u_init(neq), nonzero initial velocities
 in v_init(neq), and nonzero initial accelerations in a_init(neq).
 Otherwise, they are assumed to be zero.

 The default is to begin the simulation at time = 0. In this case, any
 existing time history results created by previous calls of this command are
 deleted. A nonzero time can be specified with begintime. In this case, if
 there are existing displacements from previous calls of this command, then
 the new nodal displacements are appended to those results.

 The displacements are saved every save_disp time steps. The displacements,
 velocities, and accelerations will be saved every save_restart time steps
 and can be used for a restart analysis. These are always saved at endtime.

 The number of time steps is the nearest integer to (endtime-begintime)/dt.
 Hence, the simulation may be slightly longer or shorter than endtime.

 The load patterns are defined by the nodef command. If the array load_comb
 exists, it is interpreted as load combination factors to be applied with
 the "load patterns" in .load_pat. Otherwise, the first load pattern is
 used. Element loads are included if they correspond to the load pattern
 used.

 The time variation of the loads is defined by arg1, which is a 2D matrix
 defining f(t). The first column is time, and the second column is the
 function value. If the time function is not defined out to endtime, the
 function is continued at the last defined value out to endtime.

 The displacements, that is the time history nodal response, is stored in
 .nodal_th_disp(neq,nsaved), where neq is the number of equations. The value
 for nsaved = (endtime-begintime)/(dt*save_disp)+1. The times are saved in
 .nodal_times(nsaved).

 The displacements, velocities and accelerations are saved in
 .th_restart_disp(neq,*), .th_restart_vel(neq,*), and
 .th_restart_acc(neq,*), where the number of columns is the number of times
 at which the results are saved. For linear analysis, the results are only
 saved at endtime. For nonlinear analysis, the number of columns depends on
 the parameter save_restart. The default is to save these only at endtime.
 In any event, the last columns are the results at endtime. The times are
 saved in .th_restart_times(*). Because nodal displacements, velocities, and
 accelerations are saved, multiple direct_th commands can be used in a
 "restart" fashion.

 If -linear is specified, no iteration is carried out and no check on
 equilibrium is made. It assumes strictly linear behavior. In this case,
 maxit, save_restart, conv, and k are ignored. Displacements, velocities,
 and accelerations are saved only at endtime. However, save_disp is used to
 save the displacements.

 For a nonlinear analysis, the time stepping is done as follows. Within a
 time step, at the end of the first iteration the unbalance in the equation
 of motion is calculated. If the maximum absolute value in the unbalance is
 less than conv(2), then no iteration is carried out; the analysis proceeds
 to the next time step and any unbalance is applied in that time step.
 Otherwise, iteration is carried out based on the unbalance. Iteration
 continues until the displacement increment for each DOF in the current

Page of 107 186

 iteration is not greater than conv(1) * the previously calculated
 displacement increment in the current time step, up to maxit iterations. If
 -strict_conv is specified, then both displacement and force convergence
 must be satisfied. Sometimes, the solver can get stuck trying to satisfy
 the convergence criterion for "small" displacements, for example, those
 that should be nearly zero. Specifying conv_option will ignore the DOFs for
 which the displacement increment in the time step is less than 10^-4 times
 the maximum displacement increment in the time step. The stiffness is kept
 constant for k_iter iterations.

 WARNING: If nonzero initial conditions are provided, including nonzero
 forces at start time, they should reflect dynamic equilibrium. The
 nonlinear solver may be able to adapt errors in the initial conditions, but
 the linear solver cannot. This warning is mostly applicable to user-defined
 intial conditions. Initial conditions based on a previous analysis should
 already satisfy dynamic equilibrium.

 See Also
 form_c form_k form_m initial_conditions modal_th nodef nsolve

disp_cntl
 Command Syntax
 disp_cntl
 Read displacement control information. The data is input immediately
 following the command in the format:

 Node DOF Factor

 The command creates the vector .disp_cntl_vec, which is used to
 calculate the generalized displacement in a displacement control
 solution.

 The command is terminated by a blank line.

 See Also
 nsolve

distr_deck_loads
 Command Syntax
 distr_deck_loads
 element=? f=? start=? end=? [DG=?] [y=?]

 Input distributed vertical deck loads for pontoon bridge element.

 element is the element number on which the load acts
 f is the distributed load (force/unit length)
 start is the distance from the beginning of the element to the start
 of the load
 end is the distance from the beginning of the element to the end of
 the load
 DG is the vertical distance from the deck to the center of gravity of
 the load
 y is the transverse offset from the center line of the element

 End input with a blank line.

Page of 108 186

 Only one distributed load may act on an element.

 Distributed load data are stored in the array .pbridge_distrlds(6,*), in
 the order element #, f, start, end, DG, y.

 This command, if used, must be given after the elements are defined with
 the pbridge command.

 See Also
 conc_deck_loads pbridge pdeck_loads

el_iso_matl
 Command Syntax
 el_iso_matl arg1 e=? nu=? [-stress] [-strain] [-axisym]
 arg1 = 2D stress-strain constitutive matrix
 e = modulus of elasticity
 -stress -> plane stress
 -strain -> plane strain
 -axisym -> axisymmetric case

 Creates the stress-strain constitutive matrix for a linear elastic,
 isotropic material.

elem_alias
 Command Syntax
 elem_alias
 Print aliases for elements.

elem_grp
 Command Syntax
 elem_grp e=? code=?
 Adds or deletes element groups to be processed

 e = element group number
 code = integer code used by the element during processing

 The group number is the same as the element "number" (1 for elem01, 2
 for elem02, etc.). The code for group "i" is stored in location "i" of
 the vector .elem_grp. Groups with a nonzero code will be processed by
 element processing commands, such as form_k, state, and response. The
 array and codes are set up during element definition, but this command
 allows specific groups to be removed and/or added from processing.

 See Also
 elem_alias form_k form_m response state

eq_direction
 Command Syntax
 eq_direction arg1 [-x] [-y] [-z]

 Define the seismic direction vector arg1 (often denoted "r" in
 structural dynamics). arg1 is a vector of 1's and 0's. If -x is
 specified, x degrees-of-freedom have a 1; other degrees-of-freedom have
 a 0. -y and -z are similar. Only one of the coordiante directions can

Page of 109 186

 be specified.

 The equations must have been numbered before this command can be used.
 It expects the number of equations to be in .#eqs and the equation
 numbers to be in .node_eqs.

 See Also
 form_k num_eqs

export_graphics
 Export mesh to graphics program input file

 Command Syntax
 export_graphics [-target] [-deformed case=? T=? -autoscale scale=? &
 steps=?] [file=?]

 Export the mesh to a graphic program's input text file.

 The graphics program is specified by the argument -target. Gmsh
 (http://www.geuz.org/gmsh/) is the only option supported at this time.
 That is, the available option is -Gmsh, and it is automatically chosen.

 The default is to plot the undeformed mesh.

 If -deformed is specified, then the displaced shapes, one for each
 displacement set (column) in .disp will be created. If case is
 specified, only the column number specified by the integer case is
 processed. In that case, the displacements can be scaled if steps is
 omitted. If -autoscale is specified, then a scale factor will be
 determined automatically for the displacment set. The scale factor will
 be determined such that the displacement is scale*length, where length
 is the maximum length of a bounding box enclosing the model. The
 default is 2% (i.e., scale=2). If -autoscale is not specified, then
 scale specifies the scaling factor. The default is no scaling.

 If -displ is specified, then the x,y,z displacements (u,v,w) in .disp
 are the plot variables.

 T= is the name of a real vector of "times". The size of the vector is
 the same as the number of columns in .disp. This option can be used as
 follows. If mode shapes are being plotted, then T could contain the
 natural periods. If .disp contains a time sequence of displacements,
 then T could contain the time for each shape. If .disp contains static
 displacements, then T could contain the load case number. If a vector
 is not specified, one is created with the values 1,2, ...

 The normal mode shapes from an eigenvalue analyis can also be
 displayed. Just copy the modes to .disp; i.e., run the following
 command prior to this command:

 cp .phi .disp

 The HYDRAN-XR GUI can display the mesh and static displaced shapes.
 Only one displaced shape per file is allowed, however (i.e., use case=
 option). It cannot display animations.

 The displacements in .disp (including mode shapes) can be animated to

Page of 110 186

 more easily visualize the shape. Use case to specify the column number
 and provide a value for steps, the number of frames per cycle that will
 be generated. These can be viewed in an external program such as Gmsh.

 If filename is specified, the results will be written to the file
 filename; othwerwise they will be written to the file project_name.msh
 (Gmsh).

fem_error
 Command Syntax
 fem_error [-SE] [-user]
 Estimate the error in a finite element solution.
 The total error (intialized to -1) is put in .fem_error. In general,
 the elements also calculate their relative error (element
 error/global error) in response to this command.

 The parameter -SE specifies that the estimate of the error in strain
 energy is used (default).

 The parameter -user specifies that the error is based on a
 user-defined error function (see the appropriate element for details.

 Each element is responsible for consistency with the specification of
 error type. See the appropriate element help page.

form_G
 Command Syntax
 form_G
 Command has not been implemented in this verison.

form_c
 Command Syntax
 form_c [-diag]
 Form global damping and put in vector .cstr. The default is to form the
 consistent damping matrix and store it in upper profile form. The
 command expects the location of the diagonals to be in the vector
 .kdiag_loc, which is formed when the equations are numbered by the
 command form_k or num_eqs. The element groups to be included in the
 damping assembly are specified by nonzero codes in the array .elem_grp,
 which is defined during element definition.

 If the flag -diag is specified, a diagonal damping matrix is formed.

 The scalar .cstr_type is created with a value of 0 for consistent
 damping and 1 for diagonal damping matrix.

 If a diagonal damping matrix is requested and an element returns a
 consistent matrix, the element damping is "lumped" by scaling the
 diagonals of Ce, the element consistent damping, by the factor
 (u^T Ce u)/(sum of diagonals), where u is a vector of ones. Hence, the
 lumped damping and the consistent damping will have the same value for
 (u^T C u). This lumping procedure is not appropriate for all types of
 elements.

 See Also
 elem_grp form_m num_eqs

Page of 111 186

form_k
 Command Syntax
 form_k [-#eqs] [-stiff] [-loads]

 Form global stiffness and loads. The element groups to be included in
 the stiffness assembly are specified by nonzero codes in the array
 .elem_grp, which is defined during element definition. The default
 operation is to number the equations, if necessary, form the stiffness,
 and form the loads. If any flag is specified, then the operation is
 determined by the flags specified, as follows:

 -#eqs -> number the equations
 -stiff -> form stiffness
 -loads -> form nodal loads

 If -#eqs is not specified, the nodal equation numbers in .node_eqs are
 used. If .node_eqs does not exist, or if -#eqs is specified, the
 equations are numbered based on the restraint codes in .bcid, which is
 established by the bcid command. The nodal equation numbers are put in
 .node_eqs(#dofs_per_node,#nodes), and the number of equations is put in
 the scalar .#eqs. The locations of the diagonal elements of the
 stiffness are stored in .kdiag_loc and the size of the stiffness matrix
 is stored in .kstr_size; hence, the elements must have been defined.

 If the stiffness is formed, the upper profile is stored in the vector
 .kstr. A scalar .k_status is also created and zeroed. This value is
 modified when the stiffness is factored.

 If the loads are formed, the load array .load_pat(#eqs,#patterns),
 where #patterns is the number of load patterns defined in .load_inp
 (see command nodef). If this array does not exist, then the zero load
 pattern array .load_pat(#eqs,1) is created. Equivalent nodal loads from
 element loads are assembled into .load_pat.

 See Also
 bcid elem_grp load_summary nodef num_eqs peqs

form_m
 Command Syntax
 form_m [-diag]
 Form global mass and put in vector .mstr. The default is to form the
 consistent mass matrix and store it in upper profile form. The command
 expects the location of the diagonals to be in the vector .kdiag_loc,
 which is formed when the equations are numbered by the command form_k
 or num_eqs. The element groups to be included in the mass assembly are
 specified by nonzero codes in the array .elem_grp, which is defined
 during element definition.

 If the flag -diag is specified, a diagonal mass matrix is formed.

 The scalar .mstr_type is created with a value of 0 for consistent mass
 and 1 for diagonal mass.

 Nodal masses input with the mass command are assembled into the global
 mass matrix, also.

Page of 112 186

 If a diagonal mass matrix is requested and an element returns a
 consistent matrix, the element mass is "lumped" by scaling the
 diagonals of Me, the element consistent mass, by the factor
 (u^T Me u)/(sum of diagonals), where u is a vector of ones. Hence, the
 lumped mass and the consistent mass will have the same value for (u^T M
 u). This lumping procedure is not appropriate for all types of
 elements.

 See Also
 elem_grp form_k mass mass_summary num_eqs

form_lagrangeG
 Command Syntax
 form_lagrangeG
 Form element G matrices for Lagrange constraint in smoothing analysis.
 This command requires the global equation numbers. The commands num_eqs
 (equation numbering) and/or node_order may be issued prior to this
 command. If the equations have not been numbered, this command will do
 it.

 See Also
 node_order num_eqs smth2q

imposed_displ
 Command Syntax
 imposed_displ
 n=node_no dof=dof disp=p1,p2,...

 Reads imposed nodal displacements.

 n is the node number
 dof indicates the nodal degree of freedom, that is, 1 for x
 translational displacements, 2 for y, ..., and 6 for z rotational
 displacements
 pi is the displacement corresponding to load pattern "i"

 The last values input for a node and dof are used. Degrees of freedom
 for which displacements are not specified are assumed to be "free",
 that is, displacements are not imposed. However, although different
 displacements can be imposed for different load patterns, a degree of
 freedom with specified displacements in one or more patterns are
 assumed to be constrained in all patterns. If the displacement value is
 not specified for a load pattern, it is assumed to be zero.

 If the optional identifiers (those in [], e.g., n=) are used in an
 input record, all data in that record must have the correct identifier.

 End input with a blank line.

 The data are stored in the array .disp_inp(2+#patterns,*). Each column
 contains the node #, DOF # (1-6), displacements in each load pattern. As
 many columns as necessary are used.

 The nodef command, which defines the number of load patterns, must
 precede this command.

Page of 113 186

 Caution: Displacements may not be imposed with all solution commands, and
 some commands may interpret these values differently. Check the help for
 the particular solution command.

 See also
 nodef pimposed_displ

initial_conditions
 Command Syntax
 initial_conditions arg [-noecho]
 n=node_no u=x,y,z,xx,yy,zz [inc=]

 Reads initial values for nodal displacements, velocities or
 accelerations.

 If -noecho is specified, the data will not be echoed to the output
 file.

 arg is the name of the neq vector to save the initial conditions.
 u are the six values for node_no. Generation occurs if two records do
 not have sequential nodes and inc, node number increment, is greater
 than 0.

 The last values specified for a node is used.

 End input with a blank line.

 The data are stored in the vector arg(neq). The equations must have been
 numbered prior to this command; see the form_k command.

 This command is meant to specify nonzero initial displacements and/or
 velocities and/or accelerations for a time history analysis. To specify
 multiple quantities, repeat the command with different names for arg.

 Note: initial conditions should be consistent with the equation of motion.

 See Also
 direct_th form_k modal_th

load_summary
 Command Syntax
 load_summary

 The sum of the loads in .load_pat in each coordinate direction is
 reported. The sums of the nodal moments are also printed. The summary
 only considers specified nodal loads and equivalent nodal loads from
 the elements. The effect of imposed displacements is not included.

 See Also
 form_k

lsolve
 Command Syntax
 lsolve [k=?] [-sparse]

Page of 114 186

 Linear solution
 k = 0 -> form stiffness by calling routine form_k
 = 1 -> use existing, unfactored stiffness
 = 2 -> use existing, factored stiffness

 For an existing stiffness, the profile stiffness is expected in array
 .kstr and the locations of the diagonals are assumed to be in array
 .kdiag_loc. Loads are assumed to be in .load_pat. If the array load_comb
 exists, it is interpreted as load combination factors to be applied with
 the "load patterns" in .load_pat. The solution is placed in .disp.

 If -sparse is specified, a sparse equation solver is used. If k > 0, the
 arrays as defined in the help for command ptosparse are expected. The
 data for the factored sparse stiffness are in arrays .sparse_mmik,
 .sparse_mmim, .sparse_mmfn, and .sparse_addr. These arrays can be deleted
 when the factored stiffness is no longer needed.

 Note 1: The sparse option is recommended for all large problems because
 it is much more efficient.

 Note 2: To include geometric stiffness in a linear analysis, precede this
 command with command form_k and then use k=1 or 2 here.

 The profile solver modifies .kstr. Although the sparse solver puts the
 factored matrix in a copy, it does reorder the original arrays.

 See Also
 form_k nodef ptosparse

mass
 Command Syntax
 mass [-noecho]
 n=node_no m=mx,my,mz,Ixx,Iyy,Izz [inc=]

 Reads nodal masses.

 If -noecho is specified, the data will not be echoed to the output
 file.

 mj and Ijj are the nodal mass/inertia with respect to the j axis.
 Generation occurs if two records do not have sequential nodes and
 inc, node number increment, is greater than 0. The generated nodal
 data will have the same value as the record with inc.

 Masses for repeated nodes are accumulated.

 End input with a blank line.

 The data are stored in the array .mass_inp(7,*), in the order node #, 6
 mass components.

 The nodal masses are assembled into the structure mass by the form_m
 command.

 See Also
 form_m pmass

Page of 115 186

Page of 116 186

mass_summary
 Command Syntax
 mass_summary [shift=?,?,?] [-save]

 A 6x6 "rigid body" mass matrix M is determined as follows. Six "rigid
 body modes" are formed in the matrix u(#dof,6), and then the 6x6 mass
 matrix is formed as u^T * .mstr * u. The default is to form the modes
 with respect to the origin, but if shift=x,y,z is specified, they are
 formed with respect to the point (x,y,z).

 For an unconstrained structure, the modes are true rigid body modes. If
 degrees-of-freedom have been restrained to be zero, any mass associated
 with those degrees of freedom are not included.

 If -save is specified, the 6x6 mass matrix is stored in
 .mass_summary6x6 and the estimates of the center of mass (see below)
 are stored in the 3x3 matrix .mass_summaryCG.

 Note: The form_m command must precede this command. Additionally, the
 command assumes the mass is in either diagonal or profile form.

 The masses in the different directions, i.e. x-mass, y-mass, and z-mass
 - M(1,1), M(2,2) and M(3,3) - may not be the same, e.g., because of
 different nodal boundary conditions. Three different estimates of the
 center of mass (xbar, ybar, zbar) relative to the shift point are
 calculated based on the 3 different masses:

 x-mass: sum of (nodal x-masses times x, y, z coordinates) divided by
 x-mass

 y-mass: sum of (nodal y-masses times x, y, z coordinates) divided by
 y-mass

 z-mass: sum of (nodal z-masses times x, y, z coordinates) divided by
 z-mass

 Because calculations involving the center of mass can be sensitive to
 the number of significant figures, these values are reported to high
 precision to aid the user. Additionally, the option to save the results
 in the database for further use is provided. Arrays can be printed to
 higher precision than the default using the options on the print
 command or the command xprint.

 Note: This command operates on the mass matrix, .mstr. Calculation of
 the center of gravity will be affected by any masses associated with
 constrained nodes. These masses will have already been transformed to
 the master node, and will be associated with the coordinates for that
 node.

 See Also
 form_m rigid_modes

merge_nodes
 Command Syntax
 merge_nodes [tol=?] [xtol=?] [ytol=?] [ztol=?] [-noprint]

 Merges the equation numbers of coincident nodes. Specifically, if the

Page of 117 186

 x, y, and z coordinates of node j are within tolerance tol (default =
 10^-8) of the coordinates of node i, i < j, then the equations for node
 j will be the same as for node i. This is carried out via the array
 .bcid. If node numbering arrays exist, they will be removed. Different
 tolerances for the coordinates may be specified via xtol, ytol, and
 ztol. If -noprint is specified, the report of merged nodes will be
 suppressed.

 See also
 bcid

Page of 118 186

modal_th
 Command Syntax
 modal_th arg1 dt=? endtime=? [xi=] [begintime=] [save_velocities=?]
 Determine the modal time history response.
 arg1 is the time function (nptsx2 array)
 dt = time step
 endtime = simutlation time
 xi = constant modal damping (xi=.02 means 2%)
 begintime = time to begin the simulation (default=0)
 save_velocities is an integer to specify the time step increment to
 save the modal velocities

 This command integrates the modal equations exactly, assuming that the time
 variation of the force varies linearly between the points in arg1. The
 command assumes the natural frequencies are in .omega(nmodes) and the
 normal modes are in .phi(neq,nmodes). It also assumes the modes have been
 mass-normalized. If xi is missing or zero, and an array xi(nmodes) exists,
 those values are used for the damping for each mode. For non-zero initial
 conditions, the initial displacements should be given in u_init(nmodes) and
 the initial velocities should be given in v_init(nmodes). If either or both
 of these arrays don't exist, they are assumed to be zero.

 The default is to begin the simulation at time = 0. In this case, any
 existing time history results created by previous calls of this command are
 deleted. A nonzero time can be specified with begintime. In this case, if
 there are existing modal displacements from previous calls of this command,
 then the new modal displacements are appended to those results.

 The modal velocities will be saved every save_velocities time steps. The
 modal velocities at endtime are always saved.

 The load patterns are defined by the nodef command. If the array load_comb
 exists, it is interpreted as load combination factors to be applied with
 the "load patterns" in .load_pat. Otherwise, the first load pattern is
 used. Element loads are included if they correspond to the load pattern
 used.

 The modal "coordinates", that is the time history modal response, are
 stored in .modal_disp(nmodes,nsteps), where nmodes is the number of
 frequencies and modes in .omega and .phi. The minimum value for nsteps =
 (endtime-begintime)/dt+1. However, the solution is also determined at each
 time for which the time function is defined (up to endtime). If the time
 function is not defined out to endtime, the function is continued at the
 last defined value out to endtime. The times are saved in
 .modal_times(nsteps). Note that regardless of dt, the solution is
 calculated at each time for which the time function has been defined. At
 each of these points, the next time is obtained by adding dt.

 The modal velocities are saved in .modal_vel(nmodes,*), where the number of
 columns depends on the parameter save_velocities. The last column is the
 velocities at endtime. The times corresponding to saved velocities are
 saved in .modal_vel_times(*). Because both the modal displacements and
 velocities are saved, multiple modal_th commands can be used in a "restart"
 fashion.

 See Also
 initial_conditions lsolve nodef

Page of 119 186

nodal_constraint
 Command Syntax
 nodal_constraint maxnodes=?
 type=general c=n cdof=cdof r=n1,n2,... rdof=r1,r2,... factor=f1,f2,...
 type=body c=n r=n1
 type=body_trans c=n r=n1

 Input linear kinematic constraints on the nodal degrees-of-freedom. There
 are three possibe constraint types: general, body, and body_trans.

 maxnodes is the maximum number of nodes that appears in any single
 constraint equation (default=4). For example, an equation for a body
 constraint involves 4 nodes, in which case maxnodes should be no less
 than 4.

 type is the type of the constraint

 Type general:
 c is the node number that has a constrained DOF
 cdof is the node-local, constrained degree-of-freedom (1-6)
 r is the node numbers, nj, with independent DOFs
 rdof is the degree of freedom, rj, for node nj
 factor is the numerical factor, fj, in the constraint equation

 Type body (rigid body constraint),
 c is the node number that is constrained
 r is the node number with the independent DOFs ("master" node)

 Type body_trans (rigid body but only translational DOFs are
 constrained):
 c is the node number that is constrained
 r is the node number with the independent DOFs ("master" node)

 End input with a blank line.

 The constraint information is stored columnwise for each constraint in
 .const_nodes(maxnodes,#constraints) = n,n1,n2,...
 .const_dofs(maxnodes,#constraints) = cdof,r1,r2,...
 .const_factor(maxnodes,#constraints) = 1,f1,f2,...

 A constrained degree-of-freedom depends on the independent
 degrees-of-freedom via a constraint equation. For the general constraint,
 the equation is

 constrained dof = f1*n1(r1) + f2*n2(r2) + ...

 in which ni(rj) represents the rj_th displacement of node ni. These
 displacements must be independent; i.e., they cannot be constrained by
 another constraint equation. For body constraints, the constraint equations
 are similar, but they express the rigid body constraint. The factors are
 calculated automatically based on the nodal coordinates.

 For type=general, these values are specified directly. For type=body, the
 factors for each degree-of-freedom are calculated based on a rigid body
 constraint. Hence, each body constraint actually corresponds to 6
 constraint equations. For type=body_trans, each constraint corresponds to 3
 constraint equations.

Page of 120 186

 The constraint information is stored columnwise for each constraint
 equation in
 .const_nodes(maxnodes,#constraint_eqs) = n,n1,n2,...
 .const_dofs(maxnodes,#constraint_eqs) = cdof,r1,r2,...
 .const_factor(maxnodes,#constraint_eqs) = 1,f1,f2,...

 This is an optional command. The command bcid must be processed prior to
 this command. The command modifies the array .bcid(7,#nodes), created by
 the bcid command, such that the value 2 is inserted in .bcid corresponding
 to constrained DOFs. If a DOF has been previously constrained by the bcid
 command, to be either 0 or identical to another DOF, the constraint
 specified by this command is ignored. This command, if used, must be
 processed prior to num_eqs and form_k.

 See also
 bcid form_k num_eqs pdisp

nodal_disp
 Command Syntax
 nodal_disp arg [nodes=?,?] [-node#]
 Arrange the nodal displacements in the first column of .disp into a
 rectangular array arg(#active_nodes,6), where the displacements for
 each active node are in a row. A range of node numbers can be specified
 by nodes=. The first value is the first node number in the range, and
 the second value is the last number in the range. If the flag -node# is
 specified, then arg will have 7 columns, the first of which is the node
 number.

 Note: Only active nodes are processed.

 See Also
 pdisp pndisp pndisp_th

nodal_pressure
 Command Syntax
 nodal_pressure
 n=first,last,incr pat=pat [p=pressure] [-hydro density=density] &
 [z=Z0] [-no_negative]

 Reads nodal pressures.

 first is the first node number in the sequence
 last is the last node number in the sequence (blank for a single node)
 incr is the node number increment in the sequence (default = 1)
 pat is the load pattern to which the pressure is assigned
 pressure is the pressure for the node (constant for the node sequence)

 If -hydro is specified, hydrostatic pressure is generated as follows.
 The pressure is calculated as -density*(z - Z0), where z is the
 z-coordinate of the node. Z0 is the z-coordinate at which the pressure
 is zero. If -no_negative is specified, then calculated negative
 pressures are set to zero. (This option is active only if hydrostatic
 pressures are calculated.)

 If n=all is specified instead of a node range, then it is applied to

Page of 121 186

 all nodes.

 End input with a blank line.

 The data are stored in the array .nodal_pressure(nodes,*), in which nodes
 is the largest active node number and the number of columns is the number
 of load patterns with pressures assigned. The integer vector
 .nodal_pressure_pat(*) is created as well; the ith element holds the
 pattern number for the ith column of .nodal_pressure. Note: the largest
 allowable load pattern is defined by the nodef command. If a larger
 pattern is specified by this command, the program will generate an error
 when the loads are formed.

 See Also
 nodef

nodef
 Command Syntax
 nodef [#=?]
 n=node_no p=pat f=?,?,?...

 Reads nodal load patterns.

 # = number DOFs per node (default = 6)
 pat is the pattern to which the load is assigned
 f specifies the loads in a comma-separated list of # values

 Loads for repeated nodes are accumulated.

 End input with a blank line.

 The data are stored in the array .load_inp(#dofs_per_node+2,*), in the
 order node #, pattern, load components.

 The maximum load pattern number specified in this command becomes the
 maximum load pattern number. If no nodal loads exist, but all loads come
 from element loads, the maximum load pattern number is still defined by
 this command, in which case a zero load should be specified. (If the
 number of load patterns equals 1, this is unnecessary.)

 See Also
 pnodef

nodes
 Command Syntax
 nodes #=?
 n=node_no x=x-coor y=y-coor z=z-coor [lgen=lgen]

 Reads and generates nodal coordinates. The value specified by # is used
 to define storage requirements, and it must be greater than or equal to
 the maximum node number. If this value is missing or 0, it is assumed
 that existing nodes are being changed or added to, and the previous
 value applies. lgen is the node number increment for linear generation.
 Nodes are generated equally spaced along a straight line if two
 adjacent records do not have sequential node numbers and if lgen on the
 second line is not zero or blank. For other generation options, see the

Page of 122 186

 command node_gen. Nodes need not be input in sequence.

 End input with a blank line.

 The coordinates are stored in array .xyz(3,#), and the maximum possible
 node number (specified by #) is stored in .#nodes_tot.

 Arrays associated with the equation numbers are deleted if # is
 specified; i.e., .bcid, .node_eqs, .#eqs, .node_eq_order, .node_active
 are deleted.

 Active nodes are those that are defined explicitly either by this command
 or another command that creates nodes. The node number of the maximum
 defined node is stored in .#nodes. The character vector .node_active has
 an "A" for active nodes. Only active nodes can be used.

 The nodes command need not be executed as long as the coordinates, which
 could be generated by another program, are put in the array .xyz, .#nodes
 and .#nodes_tot are set, .node_active is created, and any other
 associated arrays are deleted.

 See also
 node_gen pnodes bcid

node_gen
 Command Syntax
 node_gen
 linear=node1,node2 [inc=?] [w=?]
 quad=node1,node2,node3,node4 [inc=inc1,inc2] [w=w1,w2]

 Generates nodal coordinates. The nodes command must preceed this
 command.

 Linear generation is specified by the identifier linear. Nodes are
 generated from node1 to node2 with a node increment of inc (default=1).
 The spacing of nodes is equidistant unless the positive weight w
 (default=1) is specified, in which case the spacing between node n and
 n+1 is equal to w times the spacing between n-1 and n.

 The identifier quad specifies node generation within the
 "quadrilateral" defined by the four nodes (see sketch below). Linear
 generation is done between node1 and node2, and between node3 and
 node4, based on inc1 and w1. Linear generation is also done between
 node1 and node3, and between node2 and node4, based on inc2 and w2.
 Then, linear generation is done between the nodes generated from 1-3
 and 2-4, based on inc1 and w1. The number of interior lines generated
 is the same as the number of nodes generated from 1-3. If the number of
 nodes generated from 1-3 is larger than the number generated from 2-4,
 the "extra" lines will not be generated, as this would result in a
 redefinition of nodal coordinates along 3-4. If node3 and node4 are
 identical, the generated nodes are within a triangular domain. The
 nodes need not be coplanar.

 End input with a blank line.

 node3 node4
 X----------O----------O----------O----------X

Page of 123 186

 | |
 | |
 | |
 | |
 node1 | node1+inc2 |
 +inc2 O O +inc1 O O O
 ^ | |
 | | |
 generate | |
 w/ | |
 inc2 | |
 | |
 | generate w/ inc1 -> |
 X----------O----------O----------O----------X
 node1 node1+inc1 node2

 X = specified node
 O = generated node

 See also
 nodes

node_order
 Command Syntax
 node_order [-cm] [-rcm]
 Internally orders nodes based on Cuthill-McKee (-cm) or Reverse
 Cuthill-McKee (-rcm) algorithms for equation numbering. RCM is the
 default option. The node numbers are stored in .node_eq_order(.#nodes)
 in the order in which the equations will be numbered.

 This command is recommended for large problems because it can reduce the
 size of the stiffness and mass matrices, and hence the efificiency of the
 solution. If this command is used, it must come after all elements and
 nodal constraints have been defined. Furthermore, it should be either
 immediately before a num_eqs command, if that command is used, or
 otherwise immediately before a form_k command.

 Warning: This command can only be used if all active nodes with
 independent degrees of freedom are connected to each other through
 elements. That is, there must be a path between any two nodes that can be
 traversed, much as a path exists between any two leaves in a tree. Two
 separate, unconnected structures (two separate trees) do not satisfy this
 requirement. If the model includes two unconnected structures, connect
 them using a "dummy" element, such as a truss element with zero stiffness
 and zero mass. Otherwise, the command will fail.

node_str
 Calculate average nodal stresses.

 Command Syntax
 node_str arg1 arg2 arg3 [n=?] [-x] [-y] [-z] [tol=?]
 [node=node] [inc=inc gen=gen]

 n is the number of nodes specified in this command
 -x, -y, -z specify which coordinates are given (see below)

Page of 124 186

 tol is the tolerance on individual coordinates to determine to which
 node a particular point corresponds (default=1.e-8).

 node is the node number
 inc is the node increment used for generation
 gen is the number of nodes to generate.

 End input with a blank line.

 This command determines the arithmetic average of stresses at the nodes
 specified. If the number of nodes on the command line is left blank, all
 nodes are used. If it is given, as many generation commands as necessary
 may be used to define the node numbers.

 Nodal coordinates are expected in array .xyz. Coordinates and stresses
 are in array arg1 in the form coord1, ..., stresses. Which coordinates
 appear in this array are specified by the flags -x, -y, and -z. For
 example, if -x and -z are given, then the first column in arg1 contains
 x-coordinates, the second column contains z-coordinates, and the
 remaining columns are the stresses at the corresponding (x,z)
 coordinates. Coordinates that are not specified (y in this example) are
 assumed to be zero.

 The node numbers for which nodal stress averages are calculated are kept
 in array arg3(n).

 The average stresses are kept in arg2(n,*), where the number of columns
 is the same as in arg1. The rows of arg2 may be less than n, because
 nodes for which no stress values are found are eliminated from arg2 and
 arg3.

nsolve
 Command Syntax
 nsolve steps=? tol=?,? maxit=? [k=?] [control=?] [dlim=?,?] [gdisp=?]
 [dprin=?] [fprin=?] [state=?]

 Nonlinear solution command
 steps = number of load steps
 tol = load and displacement tolerances
 maxit = maximum # of iterations within a load step
 k = # of iterations with constant stiffness (K)
 < 0 -> form tangent stiffness and use for abs(k) iter.
 = 0 -> form and use initial stiffness iter.
 > 0 -> use existing stiffness for k iter., then reform
 control = 0 -> load control
 = 1 -> displacement control
 dlim = max. transl. and rotational displ. increment in iteration
 for load control
 gdisp = magnitude of the generalized displacement for displ.
 control; see command disp_cntl
 state = 1 -> do state determination in first step
 -morison= determine incoming current velocities for drag

 dprin = print flag for nodal displacements
 = 0 -> not printed from nsolve (default)
 = 1 -> print at each load step
 = 2 -> print at each iteration

Page of 125 186

 fprin = print flag for element forces
 = 0 -> not printed from nsolve (default)
 = 1 -> print at each load step
 = 2 -> print at each iteration

 A form_k command must precede this command.

 The increment in external loads is determined from the .load_pat array
 created by the command nodef. If the array load_comb exists, it is
 assumed that it is a vector of load combination factors, and the load
 patterns are combined to form the load increment. If load_comb does not
 exist, the first load pattern is taken as the load increment. The
 displacements are placed in .disp, and a history of displacements are
 kept in .disp_history.

 For additional information on the displacement control strategy, see
 Powell, G.H. and Simons, J., "Improved Iteration Strategy for Nonlinear
 Structures," IJNME, 17:1455-1467 (1981).

num_eqs
 Command Syntax
 num_eqs [-#eqs]

 Number nodal equations and determine stiffness memory requirements. The
 element groups to be included are specified by nonzero codes in the
 array .elem_grp, which is defined during element definition. The
 default operation is to number the equations if the array .node_eqs
 does not exist. If the flag -#eqs is specified, the equations are
 numbered regardless.

 The equations are numbered based on the restraint codes in .bcid, which
 is established by the bcid command and modified by the nodal_constraint
 command. The nodal equation numbers are put in
 .node_eqs(#dof_per_node,#nodes), and the number of equations is put in
 the scalar .#eqs. The locations of the stiffness diagonals are
 determined based on the element connectivity and stored in .kdiag_loc;
 hence, the elements must have been defined. The size of the stiffness
 matrix is stored in the scalar .kstr_size.

 This command is not normally used. The command form_k will number the
 equations by default, and that is the preferred approach. The command
 is provided in case a form_k command is not used, such as when only the
 mass matrix is formed. If used, it must follow the definition of all
 nodes and nodal boundary conditions, elements, and nodal constraints.

 See Also
 bcid elem_grp form_k nodal_constraints peqs

pbcid
 Command Syntax
 pbcid
 Print nodal displacement restraints.

 See also
 bcid

Page of 126 186

pbody_frc2d
 Command Syntax
 pbody_frc2d

 Print the body force coefficients defined in .body_f2d.

 See Also
 body_frc2d

pcurrentvelocity
 Command Syntax
 pcurrentvelocity
 Print current velocity

 See Also
 current_velocity

pdeck_loads
 Command Syntax
 pdeck_loads

 Print deck loads for pontoon bridge.

 See also
 conc_deck_loads distr_deck_loads pbridge

pdisp
 Command Syntax
 pdisp [nodes=?,?] [-screen] [form=format] [-file] [-append]
 Print nodal displacements in array .disp for all active nodes with a
 print code of 1. A range of node numbers can be specified by nodes=.
 The first value is the first node number in the range, and the second
 value is the last number in the range. The default is to print the
 displacements for all active nodes. The default is to print to the
 output file only; if -screen is present, the displacements will also be
 printed to the screen. The default format is (i5,2x,1p6e12.3).
 Alternative formats can be specified by the parameter form=. In this
 case, format must be a valid FORTRAN format, enclosed in () with a
 maximum length of 160 characters and without any blank spaces.

 If -file is specified, the displacements will also be written to the
 unformatted file project_name.dis. If -append is present, this file
 will be appended.

 See Also
 bcid pndisp pndisp_th

peqns
 Command Syntax
 peqns
 Print equation numbers.

 See also

Page of 127 186

 bcid form_k num_eqs

pimposed_displ
 Command Syntax
 pimposed_displ

 Print imposed displacements.

 See also
 imposed_displ

pmass
 Command Syntax
 pmass

 Print input nodal masses.

 See also
 mass

pndisp
 Command Syntax
 pndisp n=?
 Print the "history," in terms of load increments and load steps, of
 displacements for node n. The displacements are stored in
 .disp_history, which is created by command nsolve.

 See Also
 nsolve pdisp pndisp_th

pndisp_th
 Command Syntax
 pndisp_th n=? arg1 arg2
 Print the time history of displacements, velocities, or accelerations
 for node n as determined by the direct_th command. arg1 is the array of
 displacements (or velocities, or accelerations) and arg2 is the vector
 of corresponding times. For example, to print the time history of
 displacements for node 10 at the saved time steps the command would be

 pndisp_th n=10 .nodal_th_disp .nodal_times

 and to print the velocites at the restart times it would be

 pndisp_th n=10 .th_restart_vel .th_restart_times

 See Also
 direct_th pdisp pndisp

pnodef
 Command Syntax
 pnodef

 Print input nodal loads.

Page of 128 186

 See also
 nodef

pnodes
 Command Syntax
 pnodes [nodes=?,?] [-screen]
 Print nodal coordinates of active nodes. A range of node numbers can be
 specified by nodes=. The first value is the first node number in the
 range, and the second value is the last number in the range. The
 default is to print the coordinates for all active nodes. The default
 is to print to output file only; if -screen is present, then output is
 to the screen as well.

 See also
 nodes

presponse
 Command Syntax
 presponse (or presp) [-file] [-append]
 Print element response to output file.

 If -file is specified, the response will also be written to an
 unformatted file. If -append is present, this file will be appended.
 Not all elements support this option. Check the help for individual
 elements.

 See Also
 elem_grp response state

pstate
 Command Syntax
 pstate
 Print element state determined from state command.

 See Also
 elem_grp state response presponse

response
 Command Syntax
 response
 Calculate element response.
 The element groups for which the response is determined are specified
 by nonzero codes in the array .elem_grp, which is defined during
 element definition, and can be modified by the command elem_grp.

 See Also
 elem_grp state presponse

rigid_modes
 Command Syntax
 rigid_modes arg [cg=?,?,?] [rigid=?,?,?,?,?,?] [node_range=first,last]

Page of 129 186

 Generate rigid body modes relative to the "center of gravity" specified
 by cg=x-coor,y-coor,z-coord. The default is the origin. The modes are
 defined relative to axes that are parallel to the global coordinate
 axes. The default is to define six modes (surge, sway, heave, roll,
 pitch, yaw, in naval architecture parlance), but this can be controlled
 by the optional parameter rigid:

 rigid = six values, corresponding to 6 rigid body modes
 0 -> do not form corresponding rigid body mode
 1 -> form corresponding rigid body mode

 A subset of nodes can be defined by the node_range option. Nodes not in
 this range will have zero displacement.

 The modes are placed in the array specified by arg. The dimensions of
 this array are #dofs by #modes (default = 6).

 This command expects the nodal coordinates in .xyz and the equation
 numbers in .node_eqs.

 WARNING: This command has unreliable results when constrained nodes are
 involved and its use in that situation is not recommended. The problem
 is that the two constraints may not be compatible.

 See Also
 nodes num_eqs

state
 Command Syntax
 state
 Calculate element state.
 The element groups for which state determination is carried out are
 specified by nonzero codes in the array .elem_grp, which is defined
 during element definition, and can be modified by the command
 elem_grp.

 See Also
 elem_grp response pstate

water_waves
 Command Syntax
 water_waves #=#waves [h=?] grav=? [-current #pts=? current_beta=?]
 n=? ampl=? period=? phase=? beta=?
 End wave data with a blank line. If current exists, then enter current
 data, #pts records:
 n=? z=? v=?

 Reads wave and current data.

 #waves is the total number of wave components.
 h is the water depth. h=0 means deep water (default).
 grav is the acceleration of gravity.

 For each wave component:
 n ranges from 1 to #waves
 ampl is the component amplitude

Page of 130 186

 period is the component period (s)
 phase is the component phase angle (rad)
 beta is the component wave angle (degrees)
 If current, for #pts records:
 n is the record number (between 1 and #pts)
 z is the z-coordinate
 v is the current velocity

 End input with a blank line.

 It is assumed that the origin of the global coordinate axes is on the
 free surface and that the global Z axis is directed upwards.

 If there is a current, use -current. #pts must be at least 2. The first
 value must be for z=0 and the last value (negative) must be below the
 last node. current_beta is the current angle in degrees.

 If there is a current but no wave, enter a wave with zero amplitude

 Note: Only the first wave input is used at the present time (i.e., only a
 single regular wave is used).

 The following arrays are created:
 .water_wavesg(2) -> h, grav
 .water_waves(#waves,5) -> ampl, period, phase, beta (rad), wave number
 .water_current_beta -> current angle (rad)
 .water_current(#pts,2) -> z, velocity v

 See Also
 direct_th

Page of 131 186

2.7. Finite Element Library

beam3d
 Linear, 3-D beam element

 There are two Command Syntax options.

 ---------- OPTION 1 ----------
 Command Syntax (option 1)
 beam3d m=? n=? [-kg]
 m=matl e=emodulus g=gmodulus a=area j=jsec iy=iyy iz=izz &
 [asy=asy asz=asz] [mbar=density mxyz=mx,my,mz] &
 [mI=mIxx,mIyy,mIzz] [cbar=cdense cxyz=cx,cy,cz] (1 record/matl) &
 n=nel mat=mat nodes=node1,node2 node3=node3 [print=print] &
 [gen=gen inc=inc inc2=inc2] &
 [tension=tension tension_last=tension_last]

 m is the number of different materials
 n is the number of elements
 -kg is a flag to include geometric stiffness

 matl is the material number
 emodulus is the modulus of elasticity
 gmodulus is the shear modulus
 density or mx,my,mz is the mass/unit length
 area is the cross sectional area
 jsec is the torsional constant
 iyy,izz are area moments of inertia in local coordinates
 asy, asz are the shear areas in y and z, respectively
 (0 -> the corresponding shear deformation is ignored)
 mIxx, mIyy, mIzz are mass moments of inertia (per unit length)
 in local coordinates
 cdense or cx,cy,cz is the damping/unit length

 nel is the element number (ID#)
 node1 and node2 are the node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node 1 increment used for generation
 inc2 is the node 2 increment used for generation (default=inc)
 gen is the number of elements to generate
 node3 lies in the local x-z plane
 tension is the inital tension (for geometric stiffness only)
 tension_last is the initial tension for the last element in a series

 For generated elements, the initial tensions for the geometric
 stiffness are interpolated linearly, from tension in the first
 element to tension_last in the last element. If tension_last is not
 specified, it is set equal to tension.

 There are two options to specify mass density. The usual option is to
 specify density with the mbar= identifier. In some special cases, it
 may be useful to specify a different mass for different directions of
 the local axes. In that case, use the identifier mxyz= to specify the
 three values separately. If both mbar= and mxyz= are specified, mxyz=
 will be ignored if density is a nonngegative value. The element
 creates a lumped, diagonal mass matrix in local coordinates. However,
 if the mxyz are not equal, and/or the mI are not equal, then the mass

Page of 132 186

 matrix when transformed to global coordinates may not be diagonal.

 There are two options to specify damping, which is analogous to
 specifying mass and the formulation is similar. The usual option is
 to specify cdense with the cbar= identifier. It may be useful to
 specify a different damping for different directions of the local
 axes. In that case, use the identifier cxyz= to specify the three
 values separately. If both cbar= and cxyz= are specified, cxyz= will
 be ignored if cdense is a nonngegative value. The element creates a
 lumped, diagonal damping matrix in local coordinates. However, if the
 cxyz are not equal, then the damping matrix when transformed to
 global coordinates may not be diagonal.

 End input with a blank line.

 ---------- OPTION 2 ----------
 Command Syntax (option 2)
 beam3d -cylinder mat=mat node3=node3 [print=print] &
 p1=x1,y1,z1 p2=x2,y2,z2 R=R1,R2 CxL=Cseg,Lseg [face=face] &
 tension=tension_first tension_last=tension_last]

 Option 2 generates a cylindrical mesh interface elements around a 'spine'
 of beam elements.

 p1 are the center coordinates of the cylinder start
 p2 are the center coordinates of the cylinder end
 R1,R2 are the radii at the start and end, respectively
 Cseg are the number of interface elements around the circumference
 Lseg are the number of interface elements along the length

 All stiffness and mass properties are modeled by the 'spine' of beam
 elements along the center of the cylinder. The nodes to the interface
 elements are constrained via rigid body constraints to the nodes of
 the spine. For this option, the material must have been previously
 defined by an option 1 command, even if no elements were specified.

 Interface nodes and elements are numbered around the circumference
 and then down the length. The interface elements are defined such
 that the local x-axis is down the length of the cylinder and the
 positive z-face is on the inside of the cylinder. Nodes are numbered
 clockwise looking from the outside, i.e., looking at the -1 face. See
 the interface element for details.

 There is one cylinder per command line. To generate multiple cylinders,
 use multiple commands.

 ---------- ALL OPTIONS -------
 The local (principal) axes of the beam are defined as follows:
 The local x-axis is directed from node1 to node2
 The local y-axis = (x-axis) X (vector from node1 to node3)
 The local z-axis = (x-axis) X (y-axis)

 If node3 is -1, -2, or -3, then the "vector to node3" is a unit vector in
 the direction of the negative X, Y, or Z global axes, respectively.

 On input, created arrays are:
 .beam3d_mp(m,19) -> emodulus, gmodulus, unused, area, jsect,
 iyy, izz, asy, asz, mIxx, mIyy, mIzz, mx, my, mz

Page of 133 186

 cdense, cx, cy, cz
 .beam3d_el(6,n) -> node1, node2, material, print code, node3, ID#
 .beam3d_len(n) -> element length
 .beam3d_st(12,n) -> Axial Force, Vy, Vz, Torque, My, Mz at node1
 Axial Force, Vy, Vz, Torque, My, Mz at node2
 .beam3d_kg -> 0 or 1; w/o or w/ geometric stiffness

 This element calculates a lumped mass matrix in local coordinates.

 For state calculation, element forces in local coordinates are put in
 .beam3d_st. Positive forces follow the right hand rule, not "beam" sign
 convention.

 For response calculation, element does nothing.

 For state output, results in .beam3d_st are printed, but using beam sign
 convention for shear and moment; torque at nodej is positive in the local
 x-axis.

 For response output, no results are printed.

 The element can be used with nonlinear elements, but the element response
 will be linear.

 See Also
 interface pbeam3d pstate presponse

pbeam3d
 Command Syntax
 pbeam3d
 Print beam3d element data

 See Also
 beam3d

biot1d234
 1-D element for consolidation of a linear, elastic medium
 Implementation assumes element is directed along the positive X-axis.

 Command Syntax
 biot1d234 m=? n=? [disp=?] [pressure=?]
 m=matl e=emodulus a=area kx=kx gammaw=gw gammas=gs (1/matl)
 n=nel nodes=node1,node2 mat=mat [print=print] [inc=inc gen=gen]

 m is the number of different materials
 n is the number of elements

 matl is the material number
 disp is linear (default), quad, or cubic (variation of displacement)
 pressure is linear (default), quad, or cubic (variation of pressure)
 emodulus is the uniaxial strain modulus of elasticity
 area is the cross sectional area
 kx is the soil permeability
 gw is the weight density of water
 gs is the effective weight density of the soil
 nel is the element number

Page of 134 186

 node1 and node2 are end node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate

 End input with a blank line.

 Whether the elements have linear, quadratic, or cubic displacement and/or
 pressure variation, only the two end nodes are specified. The variation
 for displacements is specified by disp, and the variation for the
 pressure is specified by pressure. For quadratic and cubic elements, the
 interior nodes are generated automatically. E.g., disp=cubic
 pressure=quad would mean an element would have 4 displacement nodes and 3
 pressure nodes. For a quadratic variation, node 3 is placed in the center
 of the element. For a cubic variation, nodes 3 and 4 are placed at the
 third points. If a physical node already exists at this location, then
 that node is used. If a node does not exist, then a new node is created.
 Therefore, be sure to specify a sufficient number of nodes in the nodes
 command to include generated nodes.

 Prior to forming the stiffness of this element, the time step must be
 defined in the variable .biot_dt and the integration factor theta (2-step
 family from forward Euler (theta = 0) to backward Euler (theta = 1) must
 be defined in .biot_theta. Note: if the boundary conditions involve
 specified nonzero flow, then use theta = 1; otherwise, errors will
 result.

 Regardless of the number of nodes, 3-pt Gauss integration is used to
 calculate the stiffness. This scheme is exact for all combinations of
 displacement and pressure variation.

 On input, created arrays are:
 .biot1d234_mp(m,5) -> modulus, area, kx, gw, gs
 .biot1d234_el(10,n) -> nodes, material #, print code, #disp_nodes,
 # pressure_nodes
 .biot1d234_len(n) -> element length
 .biot1d234_st(n,15)-> coordinate, stress, excess pore pressure, flow,
 and liquifaction ratio for each gauss point

 For stiffness calculation, 3-pt Gauss integration is used.

 For state calculation, global coordinate, effective stress, excess pore
 pressure, flow and liquifaction ratio at each integration point are put
 in .biot1d234_st.

 For response calculation, global coordinate, displ., effective stress,
 excess pore pressure, and flow are calculated for local coordinates in
 biot1d234_lc. Results are put in .biot1d234_resp(*,5).

 For state output, results in .biot1d234_st are printed.

 For response output, results in .biot1d234_resp are printed.

 See Also
 pbiot1d234 pstate presponse

Page of 135 186

pbiot1d234
 Command Syntax
 pbiot1d234
 Print biot1d234 element data

 See Also
 biot1d234

biot2d3to9
 2-D element for consolidation of a linear, elastic medium
 Implementation assumes element is in the X-Z plane, with gravity acting
 in the negative Z direction and the medium's surface is at Z=0.

 Command Syntax
 biot2d3to9 m=? n=? [type=?] [gauss=?]
 m=mat# e=emodulus nu=nu kx=kx kz=kz &
 gammaw=gw gammas=gs (1 record/matl)
 n=nel nodes=node1,node2,...,node9 mat=mat [print=print] &
 [gauss=gauss] [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d inc_el=inc_el] &
 [nodesp=nodep1,nodep2,...,nodep9]

 m is the number of different materials
 n is the number of elements
 type is the element type
 2 -> plane strain (default)
 3 -> axisymmetric
 gauss is the order of Gauss integration for the stiffness matrices
 1 -> 1 x 1
 2 -> 2 x 2
 3 -> 3 x 3 (default)
 ...
 10 -> 10 x 10

 mat# is the material number
 emodulus is the modulus of elasticity
 nu is the Poisson ratio
 kx and kz are the coefficients of permeability
 gw is the weight density of water
 gs is the effective weight density of the soil

 nel is the element number
 node1 thru node9 are node numbers (3 to 9 nodes)
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 gauss overrides the previously specified integration order
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 nodep1 thru nodep9 are the nodes with pressure DOFS; if these are the
 same as the displacement nodes, they are not given. That is, the
 default is nodep1 = node1, etc.

 Nodes 1 to 4 are the corner nodes for quad elements and are specified
 counterclockwise. Nodes 5 to 8 are the midnodes on the edges (see

Page of 136 186

 sketch below), while node 9 is the center node. For triangular
 elements, only the first three nodes are to be specified. The same
 holds true for the pressure nodes.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 5 are
 incremented by inc1; nodes 6, 8, and 9 are incremented by inc2; and
 nodes 3, 4, and 7 are incremented by inc3. gen is the number of
 elements to generate, so a sequence will have gen+1 elements. To
 generate a 2D patch of elements, multiple sequences can be specified;
 inc1_2d, inc2_2d, and inc3_2d are used to increment the node numbers
 from one sequence to the next. gen_2d is the number of additional
 sequences. The element numbers in two successive sequences differ by
 inc_el (default = numgen+1).

 End input with a blank line.

 On input, created arrays are:
 .biot2d3to9_et(1) -> 2 or 3 for plane strain or axisymmetric
 .biot2d3to9_mp(m,7) -> emodulus, Poisson ratio, thickness,
 kx, kz, gw, gs
 .biot2d3to9_el(21,n) -> node1 - node9, nodep1 - nodep9, material #,
 print code, # gauss pts

 This element uses a value of 1 for the thickness.

 Prior to forming the stiffness of this element, the time step must be
 defined in the variable .biot_dt and the integration factor theta (2-step
 family from forward Euler (theta = 0) to backward Euler (theta = 1) must
 be defined in .biot_theta. Note: if the boundary conditions involve
 specified nonzero flow, then use theta = 1; otherwise, errors will
 result.

 For state calculation, X-Z coordinates, effective stress, excess pore
 pressure, flow, and liquefaction ratio at each Gauss point are put in
 .biot2d3to9_st(n,10*gauss^2). The stresses are in the global coordinate
 system and are stored in order Sxx, Syy, Sxy, Szz for each point.
 Similarly, the flow is a vector with X and Z components.

 For response calculation, the same quantities as for state are
 calculated, but this time for local coordinates in biot2d3to9_lc(#pts,2).
 Results are put in .biot2d3to9_resp(#pts*n,10). If instead global
 coordinates are given in biot2d3to9_gc(#pts,2), then results for those
 points are put in .biot2d3to9_resp(#pts,10). The vector
 .biot2d3to9_index(#pts) maps the data points to the element in which it
 falls.

 For state output, results in .biot2d3to9_st are printed.

 For response output, results in .biot2d3to9_resp are printed.

Page of 137 186

 node4 node7 node3
 X---------------------X---------------------X
 | |
 | |
 | |
 | |
 | |
 X node8 X X node6
 | node9 |
 | |
 | |
 | |
 | |
 X---------------------X---------------------X
 node1 node5 node2

 See Also
 pbiot2d3to9 presponse pstate

pbiot2d3to9
 Command Syntax
 pbiot2d3to9
 Print biot2d3to9 element data

 See Also
 biot2d3to9

cable
 Elastic catenary cable element

 Command Syntax
 cable m=? n=? [maxiter=?] [tol=?] [-restart]
 m=seg_prop e=emodulus a=area w=wx,wy,wz (m records)
 n=nel nodes=node1,node2 [#segs=#segs] [tension=tenX,tenY,tenZ]
 seg=seg mat=seg_prop L=length (#segs records)

 m is the number of different cable properties
 n is the number of elements
 maxiter is the max. # of iterations on the tension (default=30)
 tol is the relative tolerance on the end point position (default=1.e-5)

 If -restart is specified, then the data from the database is used to
 initialize the element. This option must be used if a database file
 containing cable data is read.

 For each set of cable properties:
 seg_prop is the segment property number
 emodulus is the modulus of elasticity
 area is the cross sectional area
 wx,wy,wz are the weight/unit length components in global coordinates

 For each element:
 nel is the element number
 nodes are the two nodes of the element
 #segs is the number of different segments (default=1)

Page of 138 186

 tension is the initial estimate of the tension

 seg is the segment number
 seg_prop is the segment property number
 length is the unstretched segment length

 The element is based on small strain elastic catenary theory. A shooting
 method is used to solve the two-point boundary value problem.
 Specifically, iteration on the tension at end 1 is carried out until the
 distance between end 2 and node 2, divided by the element length, is less
 than or equal to the tolerance (tol). For information on the formulation,
 see H.R. Riggs and T. Leraand, "Efficient Static Analysis and Design of
 Flexible Risers," J. Off. Mech. Arctic Engrg., Vol. 113, pp. 235-240,
 1991, and H.R. Riggs and T. Leraand, "A Robust Element for Static
 Analysis of Marine Cables," Proc. Third International Offshore and Polar
 Engineering Conference, Singapore, Vol. 2, pp. 357-363, 1993. The element
 described in those papers includes fluid drag; this element does not.

 See Also
 pcable

pcable
 command Syntax
 pcable
 Print cable element data

 See Also
 cable

contact_spring
 Nonlinear, contact spring element

 Command Syntax
 contact_spring m=? n=?
 m=mat k=Kx,Ky,Kz (1 record/material)
 n=nel node=node mat=mat [print=print] [dist=distance] [dir=lx,ly,lz]

 m is the number of different materials
 n is the number of elements

 mat is the material number
 Kx is the spring stiffness in the local x-direction
 Ky is the spring stiffness in the local y-direction
 Kz is the spring stiffness in the local z-direction

 nel is the element number
 node is the node number to which the contact spring is attached
 distance is the distance from the node to 'ground'
 mat is the material number
 print .ne. 0 -> element printout suppressed
 lx, ly, lz element orientation vector (see below)

 End input with a blank line.

 The contact spring element can be assigned to a node that may contact
 rigid 'ground'. The distance in the local x-direction from the original

Page of 139 186

 position of the node to ground is defined by dist. The local x-direction
 is defined by the orientation vector, which is directed from ground to
 the node. The default values for this direction vector are dir=0,0,1. In
 this case, the node is dist "above" ground in the global Z direction. (At
 present, only dir=0,0,1 is supported.) Once a node contacts ground, the
 spring stiffness specified by Kx, Ky, and Kz is introduced. The stiffness
 Kx tries to keep the node from going below ground. Ky and Kz prevent
 slipping along the ground (a plane normal to the direction vector).
 Clearly, Kx, Ky, and Kz function as penalty parameters, and therefore
 they should be relatively large. The element deformations are defined as
 the 'distance' below ground of the node, and the amount of slip along the
 normal plane.

 On input, created arrays are:
 .contactspring_mp(m,3) -> Kx, Ky, Kz
 .contactspring_el(n,3) -> node, material, print
 .contactspring_dr(3,n) -> lx, ly, lz
 .contactspring_dist(n) -> distance
 .contactspring_st(5,n) -> element deformations

 For state calculation, element deformations are put in .contactspring_st.

 For response calculation, element does nothing.

 For state output, results in .spring_st are printed.

 For response output, results in .spring_st are printed for those springs
 that are in contact. If the unformatted write options on the presponse
 command are specified, the results for all elements are written to the
 file project_name.cspr. The data are written: element #, node,
 indentation, slip-1, slip-2, displ-1 at slip, and displ-2 at slip.

 See Also
 pcontact_spring pstate presponse

pcontact_spring
 Command Syntax
 pcontact_spring
 Print contact spring element data

 See Also
 contact_spring

d1l234
 1-D, linear, 2,3, or 4 node, isoparametric "rod" element
 Implementation assumes element is parallel to X-axis.

 Command Syntax
 d1l234 m=? n=?
 m=matl e=emodulus a=area [mbar=density] [k=kdsp] (1 record/matl)
 n=nel nodes=node1,node2,node3,node4 mat=mat [print=print] &
 [inc=inc gen=gen]

 m is the number of different materials
 n is the number of elements

Page of 140 186

 matl is the material number
 emodulus is the modulus of elasticity
 area is the cross sectional area
 density is density/unit length (unused)
 kdsp is a distributed spring stiffness along length of member

 nel is the element number
 node1 thru node4 are node numbers (2,3 or 4 nodes)
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate

 End input with a blank line.

 On input, created arrays are:
 .d1l234_mp(m,4) -> modulus, area, dens, ksp
 .d1l234_el(n,7) -> node1 - node4, material, print code, #nodes
 .d1l234_len(n) -> element length
 .d1l234_st(n,8) -> coordinate and force for each gauss point

 For stiffness calculation, exact integration is used.

 For state calculation, coordinates and stresses are put in .d1l234_st.

 For response calculation, global coordinate, displ., and force are
 calculated for local coordinates in d1l234_lc. Results are put in
 .d1l234_resp(*,3).

 For state output, results in .d1l234_st are printed.

 For response output, results in .d1l234_resp are printed.

 See Also
 pd1l234 pstate presponse

pd1l234
 Command Syntax
 pd1l234
 Print d1l234 element data

 See Also
 d1l234

d1l234v2
 1-D, linear, 2,3, or 4 node, isoparametric "rod" element, version 2
 Implementation assumes element is parallel to X-axis.

 Command Syntax
 d1l234v2 m=? n=? [-linear] [-quad] [-cubic]
 m=matl e=emodulus a=area [mbar=density] [k=kdsp] (1 record/matl)
 n=nel nodes=node1,node2 mat=mat [print=print] [inc=inc gen=gen]

 m is the number of different materials
 n is the number of elements

Page of 141 186

 -linear indicates a 2-node, linear displ element
 -quad indicates a 3-node, quadratic displ element
 -cubic indicates a 4-node, cubic displ element
 matl is the material number
 emodulus is the modulus of elasticity
 area is the cross sectional area
 density is density/unit length (unused)
 kdsp is a distributed spring stiffness along length of member

 nel is the element number
 node1 and node2 are the two end node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate

 End input with a blank line.

 Whether the elements have linear, quadratic, or cubic displacement
 variation, only the two end nodes are specified. For quadratic and cubic
 elements, the interior nodes are generated automatically. For quadratic
 elements, node 3 is placed in the center of the element. For cubic
 elements, nodes 3 and 4 are placed at the third points. If a physical
 node already exists at this location, then that node is used. If a node
 does not exist, then a new node is created. Therefore, be sure to specify
 a sufficient number of nodes in the nodes command to include generated
 nodes. The automatic generation of interior nodes is the main difference
 between this element and d1l234 (in addition to extensive code changes).

 On input, created arrays are:
 .d1l234_mp(m,4) -> modulus, area, dens, ksp
 .d1l234_el(7,n) -> node1 - node4, material, print code, #nodes
 .d1l234_len(n) -> element length
 .d1l234_st(n,8) -> coordinate and force for each gauss point

 For stiffness calculation, exact integration is used.

 For state calculation, coordinates and stresses are put in .d1l234_st.

 For response calculation, global coordinate, displ., and force are
 calculated for local coordinates in d1l234_lc. Results are put in
 .d1l234_resp(*,3).

 For state output, results in .d1l234_st are printed.

 For response output, results in .d1l234_resp are printed.

 See Also
 pd1l234v2 nodes pstate presponse

pd1l234v2
 Command Syntax
 pd1l234v2
 Print d1l234v2 element data

 See Also
 d1l234v2

Page of 142 186

d2l3to9
 2-D, linear, 3 to 9 node, isoparametric element for 2-D elasticity.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 d2l3to9 m=? n=? [type=?] [gauss=?]
 m=mat# e=emodulus [nu=nu t=thickness [mass=mass] &
 pat=pat bx=distr_x by=distr_y [gaussf=gaussf] (1 record/matl)
 n=nel nodes=node1,node2,...,node 9 mat=mat [print=print] &
 [gauss=gauss] [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d inc_el=inc_el]

 m is the number of different materials
 n is the number of elements
 type is the element type
 1 -> plane stress (default)
 2 -> plane strain
 3 -> axisymmetric
 gauss is the order of Gauss integration for stiffness and mass
 1 -> 1 x 1
 2 -> 2 x 2
 3 -> 3 x 3 (default)
 ...
 10 -> 10 x 10

 mat# is the material number
 emodulus is the modulus of elasticity
 nu is the Poisson ratio
 thickness is the element thickness
 mass is the mass density (per unit volume)
 pat is the load pattern number for the body forces
 distr_x and distr_y specify distributions for body forces (per
 unit volume) in the X-Y coordinates. The distributions are defined
 by the body_frc2d command.
 gaussf is the integration order for the body forces (default = 3).

 nel is the element number
 node1 thru node9 are node numbers (3 to 9 nodes)
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 gauss overrides the previously specified integration order
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Nodes 1 to 4 are the corner nodes for quad elements and are specified
 counterclockwise. Nodes 5 to 8 are the midnodes on the edges (see
 sketch below), while node 9 is the center node. For triangular
 elements, only the first three nodes are to be specified.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 5 are
 incremented by inc1; nodes 6, 8, and 9 are incremented by inc2; and
 nodes 3, 4, and 7 are incremented by inc3. gen is the number of

Page of 143 186

 elements to generate, so a sequence will have gen+1 elements. To
 generate a 2D patch of elements, multiple sequences can be specified;
 inc1_2d, inc2_2d, and inc3_2d are used to increment the node numbers
 from one sequence to the next. gen_2d is the number of additional
 sequences. The element numbers in two successive sequences differ by
 inc_el (default = numgen+1).

 End input with a blank line.

 On input, created arrays are:
 .d2l3to9_et(1) -> 1,2,3 for plane stress, strain, or axisym.
 .d2l3to9_mp(m,8) -> emodulus, Poisson ratio, thickness, mass,
 load pattern, bx, by, gaussf
 .d2l3to9_el(12,n) -> node1 - node9, material #, print code, # gauss pts

 This element forms a consistent mass matrix.

 For state calculation, X-Y coordinates and stress at each Gauss point are
 put in .d2l3to9_st(n,6*gauss^2). The stresses are in the global
 coordinate system and are stored in order Sxx, Syy, Sxy, Szz for each
 point.

 For response calculation, global coordinates and stresses are calculated
 for local coordinates in d2l3to9_lc(#pts,2). Results are put in
 .d2l3to9_resp(#pts*n,6). See the explanation for state calculation for
 the order of stresses. If instead global coordinates are given in
 d2l3to9_gc(#pts,2), then results for those points are put in
 .d2l3to9_resp(#pts,6). The vector .d2l3to9_index(#pts) maps the data
 points to the element in which it falls.

 For state output, results in .d2l3to9_st are printed.

 For response output, results in .d2l3to9_resp are printed.

 For error estimation, the strain-energy option and the "user" option are
 supported. With strain-energy based error estimation, the "exact"
 stresses are expected in .d2l3to9_xst(n,6*#pts) in the same format as
 .d2l3to9_st; these values may be the result of some smoothing procedure.
 The finite element stresses are expected in .d2l3to9_st(n,6*#pts). The
 number of integration points used for the element error is based on the
 number of columns of these matrices. If the same integration points used
 for the stiffness calculation are used, .d2l3to9_st can be generated by
 the state command; otherwise, it can be generated by the response command
 and rearranged by the unwrap command. The X,Y coordinates and error of
 each integration point are put in .d2l3to9_err(n,3*#pts). The integrated
 element error and relative error (element error/global error) are put in
 .d2l3to9_elerr(n,2).

 The "user" error estimation option functions similarly, except that the
 error function is expected in .d2l3to9_ruser(n,3*#pts), where #pts is the
 number of integration points and the first two columns contain the global
 coordinates. This option creates the same arrays as the strain-energy
 option. Because .d2l3to9_ruser can contain the values of any function,
 this option can be used for the numerical evaluation of an integral over
 a two-dimensional domain. For example, if .d2l3to9_ruser contains all
 ones, then the element and total volumes will be calculated.

Page of 144 186

 node4 node7 node3
 X---------------------X---------------------X
 | |
 | |
 | |
 | |
 | |
 X node8 X X node6
 | node9 |
 | |
 | |
 | |
 | |
 X---------------------X---------------------X
 node1 node5 node2

 See Also
 gauss_pts pd2l3to9 presponse pstate unwrap

pd2l3to9
 Command Syntax
 pd2l3to9
 Print d2l3to9 element data

 See Also
 d2l3to9

d2ltri
 2-D, linear, 3 to 6 node, isoparametric triangular element for 2-D
 elasticity.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 d2ltri m=? n=? [type=?] [intpt=?] [tol=?]
 m=mat# e=emodulus nu=nu t=thickness [mass=mass] &
 pat=pat bx=distr_x by=distr_y [intf=intf] (1 record/matl)
 n=nel nodes=node1,node2,...,node 6 mat=mat [print=print] &
 [intpt=intpt] [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d inc_el=inc_el]

 m is the number of different materials
 n is the number of elements
 type is the element type
 1 -> plane stress (default)
 2 -> plane strain
 3 -> axisymmetric
 intpt is the order of integration
 1 -> 1 pt. integration
 3 -> 3 pt. integration (default)
 4 -> 4 pt. integration
 7 -> 7 pt. integration
 9 -> 9 pt. integration
 tol is a tolerance on nodal coordinates (see below)

 mat# is the material number

Page of 145 186

 emodulus is the modulus of elasticity
 nu is the Poisson ratio
 thickness is the element thickness
 mass is the mass density (per unit volume)
 pat is the load pattern number for the body forces
 distr_x and distr_y specify distributions for body forces (per unit
 volume) in the X-Y coordinates. The distributions are defined by
 the body_frc2d command
 intf is the integration order for the body forces and mass(default = 4)

 nel is the element number
 node1 thru node6 are node numbers (3 or 6 nodes)
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 intpt overrides the previously specified integration order
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Nodes 1 to 3 are the corner nodes for the elements and are specified
 counterclockwise. Nodes 4 to 6 are the midnodes on the edges (see
 sketch below). If a negative value is input for a midside node, then
 the coordinates of the node are calculated midway between the
 corresponding vertex nodes. If a node does not exist at that location
 (within tolerance of tol), a node will be generated with a node number
 one greater than the previous maximum defined node number. In this
 case, the restraint codes for the node of absolute value of the number
 specified will be used for the new node (e.g., if -10 is specified,
 then restraint codes for node 10 will be used). Normally, it will be
 convenient to use the negative of one of the vertex nodes.

 When specifying intf to calculate the mass matrix, one should be aware
 that with the 6-node element and 3-pt integration, the integration
 points are at the midside nodes. This leads to a diagonal mass matrix
 with zeroes for the vertex nodes. An intf of 1, 4, or higher will avoid
 this.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 4 are
 incremented by inc1; nodes 5 and 6 are incremented by inc2; and node 3
 is incremented by inc3. gen is the number of elements to generate, so a
 sequence will have gen+1 elements. Multiple sequences can be specified;
 inc1_2d, inc2_2d, and inc3_2d are used to increment the node numbers
 from one sequence to the next. gen_2d is the number of additional
 sequences. The element numbers in two successive sequences differ by
 inc_el (default = numgen+1). Note: Node increments are added to
 positive node numbers and subtracted from negative node numbers.

 End input with a blank line.

 On input, created arrays are:
 .d2ltri_et(1) -> 1, 2, 3 for plane stress, strain, or axisym.
 .d2ltri_mp(m,8) -> emodulus, Poisson ratio, thickness, mass, &
 load pattern, bx, by, intf
 .d2ltri_el(n,9) -> node1 - node6, material #, print code, #integ. pts

Page of 146 186

 This element forms a consistent mass matrix.

 For state calculation, X,Y coordinates and stress (Sx, Sy, Sxy, Sz) at
 each integration point are put in .d2ltri_st(n,6*#pts).

 For response calculation, X,Y coordinates and stresses are calculated for
 area coordinates (3 values/point) in d2ltri_lc(#pts,3). Results are put
 in .d2ltri_resp(n*#pts,6).

 For state output, results in .d2ltri_st are printed.

 For response output, results in .d2ltri_resp are printed.

 For error estimation, the strain-energy option and the "user" option are
 supported. With strain-energy based error estimation, the "exact"
 stresses are expected in .d2ltri_xst(n,6*#pts), i.e., in the same form as
 .d2ltri_st; these values may be the result of some smoothing procedure.
 The finite element stresses are expected in .d2ltri_st(n,6*#pts). The
 number of integration points used for the element error is based on the
 number of columns of these matrices. If the same integration points used
 for the stiffness calculation are used, .d2ltri_st can be generated by
 the state command; otherwise, it can be generated by the response command
 and rearranged by the unwrap command. The X,Y coordinates and error of
 each integration point are put in .d2ltri_err(n,3*#pts). The integrated
 element error and relative error (element error/global error) are put in
 .d2ltri_elerr(n,2).

 The "user" error estimation option functions similarly, except that the
 error function is expected in .d2ltri_ruser(n,3*#pts), where #pts is the
 number of integration points and the first two columns contain the global
 coordinates. This option creates the same arrays as the strain-energy
 option. Because .d2ltri_ruser can contain the values of any function,
 this option can be used for the numerical evaluation of an integral over
 a two-dimensional domain. For example, if .d2ltri_ruser contains all
 ones, then the element and total volumes will be calculated.

 node3
 X
 | |
 | |
 | |
 | |
 | |
 node6 X X node5
 | |
 | |
 | |
 | |
 | |
 X-----------X-----------X
 node1 node4 node2

 See Also
 pd2ltri presponse pstate tri_intpts unwrap

Page of 147 186

pd2ltri
 Command Syntax
 pd2ltri
 Print d2ltri element data

 SeeAlso
 d2ltri

iFEM2D
 2-D, 3 to 9 node, isoparametric element for 2-D nonlinear iFEM.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 iFEM2D n=? [gauss=?,?]
 n=nel nodes=node1,node2,...,node 9 print=print inc=inc1,inc2,inc3 &
 gen=gen inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d &
 inc_el=inc_el

 n is the number of elements
 gauss is the order of Gauss integration for stiffness and "loads"
 n,m -> n x m in the xi and eta directions (default = 4x4)

 nel is the element number
 node1 thru node9 are node numbers (3 to 9 nodes)
 print .ne. 0 -> element results not printed
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Nodes 1 to 4 are the corner nodes for quad elements and are specified
 counterclockwise. Nodes 5 to 8 are the midnodes on the edges (see
 sketch below), while node 9 is the center node. For triangular
 elements, only the first three nodes are to be specified. Note: this
 element is meant to be used with 6 nodes, with quadratic interpolation
 in the longitudinal direction and linear interpolation in the
 transverse direction.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 5 are
 incremented by inc1; nodes 6, 8, and 9 are incremented by inc2; and
 nodes 3, 4, and 7 are incremented by inc3. gen is the number of
 elements to generate, so a sequence will have gen+1 elements. To
 generate a 2D patch of elements, multiple sequences can be specified;
 inc1_2d, inc2_2d, and inc3_2d are used to increment the node numbers
 from one sequence to the next. gen_2d is the number of additional
 sequences. The element numbers in two successive sequences differ by
 inc_el (default = numgen+1).

 End input with a blank line.

 On input, created arrays are:
 .ifem2d_int(2) -> # gauss pts in xi and eta directions
 .ifem2d_el(10,n) -> node1 - node9, print code

 For state calculation, X-Y coordinates, X-Y displacements, and strain at

Page of 148 186

 each Gauss point are put in .ifem2d_st(n,7*gauss_xi*gauss_eta). The
 strains are in the global coordinate system and are stored in order Exx,
 Eyy, Exy for each point.

 For response calculation, global coordinates and strains are calculated
 for local coordinates in ifem2d_lc(#pts,2). Results are put in
 .ifem2d_resp(#pts*n,7). See the explanation for state calculation for the
 data and order of strains. If instead global coordinates are given in
 ifem2d_gc(#pts,2), then results for those points are put in
 .ifem2d_resp(#pts,7). The vector .ifem2d_index(#pts) maps the data points
 to the element in which it falls.

 For state output, results in .ifem2d_st are printed.

 For response output, results in .ifem2d_resp are printed.

 No error estimation feature is supported.

 See Paczkowski, K., Riggs, H.R., 2007, "An inverse finite element
 strategy to recover full-field, large displacements from strain
 measurements," Proc., 26th International Offshore Mechanics and Arctic
 Engineering Conference, paper OMAE2007-29730 for details on this element.

 node4 node7 node3
 X---------------------X---------------------X
 | |
 | |
 | |
 | |
 | |
 X node8 X X node6
 | node9 |
 | |
 | |
 | |
 | |
 X---------------------X---------------------X
 node1 node5 node2

 See Also
 gauss_pts piFEM2D presponse pstate

piFEM2D
 Command Syntax
 piFEM2D
 Print iFEM2D element data

 See Also
 iFEM2D

interface
 Quadrilateral (and triangular) interface element

 Command Syntax (option 1)

Page of 149 186

 interface n=?
 n=nel nodes=node1,node2,node3,node4 [print=print] [face=face] &
 [gen=gen inc=inc1,inc2] &
 [gen_2d=gen_2d inc_2d=inc1_2d,inc2_2d inc_el=inc_el]

 n is the maximum element number specified

 nel is the element number
 node1 thru node4 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1, inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 face specifies the face on which the pressure acts
 = 0 -> no pressure acts ("dry" element) - default
 = -1 -> pressure acts on negative face (-z)
 = 1 -> pressure acts on positive face (+z)

 Command Syntax (option 2)
 interface -subdivide range=?,? nxm=?,?

 Option 2 subdivides previously defined elements
 range specifies a range of element ID numbers; all elements
 in the range are divided
 nxm specifies how many elements to subdivide each element into.
 For example, nxm=2,3 would subdivide each element into 6
 elements; 2 in the 1-2 direction and 3 in the 1-4 direction.

 Nodes 1 to 4 are the corner nodes for quadrilateral elements, specified
 in a counterclockwise order when looking at the positive face. For
 triangular elements, if node 4 is not specified it will be set equal to
 node 3.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, and gen. In a linear sequence, nodes 1 and 2 are incremented by
 inc1; nodes 3 and 4 are incremented by inc2. gen is the number of
 elements to generate, so a sequence will have gen+1 elements. Multiple
 sequences can be specified; inc1_2d and inc2_2d are used to increment
 the node numbers from one sequence to the next. gen_2d is the number of
 additional sequences. The element numbers in two successive sequences
 differ by inc_el (default = numgen+1).

 The local x-axis (axis-1) is directed from node 1 to node 2. The local
 y-axis (axis-2) lies in the plane defined by nodes 1-2-4, is normal to
 the x-axis, and is directed "toward" node 4. The local z-axis (axis-3)
 follows from the right-hand-rule.

 The normal pressures act in the local z-direction.

 End input with a blank line.

 On input, created arrays are:
 .interface_el(8,n) -> node1 - node4, print code, face, ID#
 .interface_pressure -> 1 if -pressure specified, otherwise 0

Page of 150 186

 The columns of .interface_el are based on the number of defined elements,
 not the maximum ID# (i.e., ID numbers don't have to be sequential).

 This element does very little. It has no stiffness or mass. The following
 is an example of one possible use. For visualization purposes, it can be
 used to represent the surface of a rigid body with the nodes of this
 element kinematically constrained to the CG of the rigid body so that the
 displacements are kinematically constrained. The face parameter is
 included to allow one side to be distinguished from the other (for
 example, as 'wet').

pinterface
 Command Syntax
 pinterface
 Print interface element data

 See Also
 interface

isomin6
 Linear, 6-node, 18 DOF triangular, isoparametric Mindlin plate element.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 isomin6 m=? n=? [q=q_vec]
 m=mat# e=E1,E2,E3 g=G12,G23,G13 nu=nu12,nu23,nu13 &
 t=thickness mass=mass iso=iso (1 record/matl)
 n=nel nodes=node1,node2,node3,node4,node5,node6 mat=mat print=print &
 inc=inc1,inc2,inc3 gen=gen inc_2d=inc1_2d,inc2_2d,inc3_2d &
 gen_2d=gen_2d inc_el=inc_el pat=pat [q=q1,q2,q3,q4,q5,q6]

 m is the number of different materials
 n is the number of elements
 q_vec is the name of a vector in the database in which the ith element
 is the normal pressure at node i

 mat# is the material number
 E1, E2, E3 are the moduli of elasticity
 G12, G23, G13 are the shear moduli
 nu12, nu23, nu13 are the Poisson ratios
 thickness is the element thickness
 mass is the mass per unit volume
 iso = 0 -> isotropic material (default)
 = 1 -> orthotropic material

 nel is the element number
 node1 thru node6 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1 and inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1, inc2 inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3-2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

Page of 151 186

 pat is the load pattern number for the normal pressures
 q1,q2,q3,q4,q5,q6 are normal pressures for nodes (these values override
 those defined by q_vec, if any.)

 Nodes 1 to 3 are the corner nodes and are specified counterclockwise.
 Nodes 4 to 6 are the midnodes.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 4 are
 incremented by inc1; nodes 5, 6 are incremented by inc2; and nodes 3 is
 incremented by inc3. gen is the number of elements to generate, so a
 sequence will have gen+1 elements. To generate a 2D patch of elements,
 multiple sequences can be specified; inc1_2d, inc2_2d, and inc3_2d are
 used to increment the node numbers from one sequence to the next.
 gen_2d is the number of additional sequences. The element numbers in
 two successive sequences differ by inc_el (default = numgen+1).

 End input with a blank line.

 The element is restricted to lie in an x-y plane (z=constant). For an
 orthotropic material, the material parameters are specified in the global
 coordinate system.

 The normal pressures act in the z-direction.

 On input, created arrays are:
 .isomin6_mp(m,14) -> Ei, Gij, nuij, thickness, mass, unused, unused,
 iso
 .isomin6_el(8,n) -> node1 - node6, material #, print code
 .isomin6_q(7,n) -> pat, q1, q2, q3, q4, q5, q6

 If a nonzero mass density is specified, uniform (gravitational) body
 forces are applied if the vector gravity(4) has been defined. The 4
 components of gravity are: load pattern number, gx, gy, and gz, where gi
 is the gravitational acceleration in the global i direction.

 For state calculation, global coordinates and bending stress resultants
 are stored in .isomin6_stb(n, 4*8) in the order x, y, z, Mx, My, Mxy, Qx,
 and Qy. These values are calculated at the 4 Gauss points of the
 triangle.

 The element does not calculate the equivalent nodal forces in equilibrium
 with its stress state, and therefore cannot be used in a nonlinear
 analysis.

 The response option has not been implemented.

 The error estimation option has not been implemented.

 For state output, the stress resultants in .isomin6_stb are printed.

 See Also
 pisomin6 min3s min5s min6 pstate

pisomin6
 Command Syntax
 pmin6

Page of 152 186

 Print isomin6 element data

 See Also
 isomin6

min3s
 Mindlin 3-D triangular, linear shell element.
 Membrane and shear relaxations are included in the implementation.

 Command Syntax
 min3s m=? n=? [-pressure] [-kg] [-kf]
 m=mat# e=E1,E2,E3 g=G12,G23,G13 nu=nu12,nu23,nu13 t=thickness &
 [tb=tbending] [mass=mass] [global=global] &
 [C_s=relxs] [C_m=relxm] [drill=drill_stiff] &
 [fdensity=fdensity] (1 record/matl)
 n=nel mat=mat nodes=node1,node2,...,node 6 [print=print] &
 [face=face] [gen=gen inc=inc1,inc2,inc3] &
 [gen_2d=gen_2d inc_2d=inc1_2d,inc2_2d,inc3_2d inc_el=inc_el

 m is the number of different materials
 n is the number of elements
 -pressure is a flag to apply nodal pressures in the array
 .nodal_pressure
 -kg is a flag to include geometric stiffness
 -kf is a flag to include hydrostatic stiffness (includes geometric
 stiffness)

 mat# is the material number
 E1, E2, E3 are the moduli of elasticity
 G12, G23, G13 are the shear moduli
 nu12, nu23, nu13 are the Poisson ratios
 thickness is the element thickness (see below)
 tbending is the element bending thickness (default=thickness)
 mass is the mass per unit volume
 global = 0 -> calc. stress resultants in local coordinates (default)
 = 1 -> calc. stress resultants in global coordinates
 relxs is the shear relaxation factor (default = 0.5)
 relxm is the membrane relaxation factor (default = 1.0)
 drill_stiff is an artificial drilling stiffness (default = 1.e-5)
 fdensity is the fluid weight density to calculate the hydrostatic
 stiffness
 Note: Defaults are obtained for the above factors not by specifying
 0.0, but by omitting the input for the specific factors or by
 specifiying a negative value.

 nel is the element number
 node1 thru node6 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 face specifies the face on which the pressure acts
 = 0 -> no pressure acts ("dry" element) - default
 = -1 -> pressure acts on negative face (-z)

Page of 153 186

 = 1 -> pressure acts on positive face (+z)

 Nodes 1 to 3 are the vertex nodes and are specified counterclockwise.
 Nodes 4 to 6 are the midnodes on the edges, which are used to define
 the initial curvature of the element, and do not have any degree of
 freedom. If the element is "flat", then nodes 4 to 6 may be specified
 as zero.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 4 are
 incremented by inc1; nodes 5 and 6 are incremented by inc2; and node 3
 is incremented by inc3. gen is the number of elements to generate, so a
 sequence will have gen+1 elements. Multiple sequences can be specified;
 inc1_2d, inc2_2d, and inc3_2d are used to increment the node numbers
 from one sequence to the next. gen_2d is the number of additional
 sequences. The element numbers in two successive sequences differ by
 inc_el (default = numgen+1).

 The local x-axis (1) is directed from node 1 to node 2. The local
 y-axis (2) lies in the plane defined by the vertex nodes, is normal to
 the x-axis, and is directed "toward" node 3. The local z-axis (3)
 follows from the right-hand-rule.

 The material parameters are specified in the local coordinate system.
 thickness is used for the membrane and shear stiffnesses, while
 tbending is used for the bending stiffness. If tbending is not input,
 it will be set equal to thickness. thickness is also used to determine
 the mass (from the mass density). The element has no drilling dof
 stiffness, and so an artificial stiffness is added to these dofs that
 is equal to drill_stiff times the minimum of the element diagonal
 stiffnesses.

 The normal pressures act in the local z-direction.

 End input with a blank line.

 On input, created arrays are:
 .min3s_mp(m,17) -> Ei, Gij, nuij, thickness, mass, global, C_s, C_m,
 tbending, drill_stiff, fdensity
 .min3s_el(9,n) -> node1 - node6, material #, print code, face
 .min3s_pressure -> 1 if -pressure specified, otherwise 0

 For stiffness calculation, the shear and membrane relaxation factors are
 stored in .min3s_rlx(2,n) for later use in calculating the element state.

 If a nonzero mass density is specified, uniform (gravitational) body
 forces are applied if the vector gravity(4) has been defined. The 4
 components of gravity are: load pattern number, gx, gy, and gz, where gi
 is the gravitational acceleration in the global i direction.

 If hydrostatic stiffness is to be calculated, gravity is assumed to act
 in the negative global z direction. The hydrostatic stiffness is only
 calculated for "wet" elements, i.e., with face = +-1. The flag -pressure
 must be specified as well. The hydrostatic pressure is assumed to be in
 the first column of .nodal_pressure, as specified by the command
 nodal_pressure. In this case, the load pattern number should be 1 for
 this pressure. If multiple load patterns are used, they should all have
 the same pressures specified.

Page of 154 186

 For state calculation, global coordinates and the stress resultants in
 the local coordinate system are put in .min3s_st(n,11) in the order x, y,
 z, Nx, Ny, Nxy, Mx, My, Mxy, Qx, and Qy. These values are calculated at
 the element centroid. If the value of global on the material card is
 specified to be 1, then the resultants in global coordinates are
 calculated instead. (This option gives correct results only if the
 element is in the global X-Y plane.) The element does not calculate the
 equivalent nodal forces in equilibrium with its stress state, and
 therefore cannot be used in a nonlinear analysis.

 For response calculation, global coordinates and local stress resultants
 are calculated for local coordinates in min3s_lc(#pts,3). Results are put
 in .min3s_resp(#pts*n,11). See the explanation for state calculation for
 the order and for the option for resultants in global coordinates.

 For state output, stress resultants in .min3s_st are printed.

 For response output, coordinates and stress resultants in .min3s_resp are
 printed.

 For error estimation, the strain-energy option and the "user" option are
 supported. With strain-energy based error estimation, the "exact" stress
 resultants are expected in .min3s_xst(n,11*#pts), i.e., in the same form
 as .min3s_st; these values may be the result of some smoothing procedure.
 The finite element resultants are expected in .min3s_st(n,11*#pts). The
 number of integration points used for the element error is based on the
 number of columns of these matrices. If one-point integration is used,
 .min3s_st can be generated by the state command. The X,Y,Z coordinates
 and error of each integration point are put in .min3s_err(n,4*#pts). The
 integrated element error and relative error (element error/global error)
 are put in .min3s_elerr(n,2).

 The "user" error estimation option functions similarly, except that the
 error function is expected in .min3s_ruser(n,4*#pts), where #pts is the
 number of integration points and the first three columns contain the
 global coordinates. This option creates the same arrays as the
 strain-energy option. Because .min3s_ruser can contain the values of any
 function, this option can be used for the numerical evaluation of an
 integral over a two-dimensional domain. For example, if .min3s_ruser
 contains all ones, then the element and total volumes will be calculated.

 For the theory of this element, see Tessler, A., "A C0 anisoparametric
 three-node shallow shell element," Computer Methods in Applied Mechanics
 and Engineering, v. 78, 1990, pp. 89-103.

 The basic element has been provided courtesy of Dr. Alex Tessler,
 Computational Mechanics Branch, NASA Langley Research Center, Hampton,
 VA. For the hydrostatic stiffness formulation, see Huang, L.L. and Riggs,
 H.R., "The hdyrostatic stiffness of flexible floating structures for
 linear hydroelasticity," Marine Structures, v. 13,2000, pp. 91-106.

 See Also
 nodal_pressure pmin3s pstate

pmin3s
 Command Syntax

Page of 155 186

 pmin3s
 Print min3s element data

 See Also
 min3s

min5s
 Mindlin 3-D quadrilateral, linear shell element consisting of 4 min3s
 (triangular) elements. Membrane and shear relaxations are included in the
 implementation. There are three Command Syntax options.

 ---------- OPTION 1 ----------
 min5s m=? n=? [-pressure] [-kg] [-kf]
 m=mat# e=E1,E2,E3 g=G12,G23,G13 nu=nu12,nu23,nu13 &
 t=thickness [tb=tbending] [mass=mass] [local=local] &
 [C_s=relxs] [C_m=relxm] [drill=drill_stiff] &
 [iso=iso] [fdensity=fdensity] (1 record/matl)
 n=nel nodes=node1,node2,...,node5 mat=mat [print=print] [face=face] &
 [gen=gen inc=inc1,inc2,inc3] &
 [gen_2d=gen_2d inc_2d=inc1_2d,inc2_2d,inc3_2d inc_el=inc_el]

 m is the number of different materials
 n is the maximum element number specified
 -pressure is a flag to apply nodal pressures in the array
 .nodal_pressure
 -kg is a flag to include geometric stiffness
 -kf is a flag to include hydrostatic stiffness (includes geometric
 stiffness)

 mat# is the material number
 E1, E2, E3 are the moduli of elasticity
 G12, G23, G13 are the shear moduli
 nu12, nu23, nu13 are the Poisson ratios
 thickness is the element thickness (see below)
 tbending is the element bending thickness (default=thickness)
 mass is the mass per unit volume
 local = 0 -> calculate stress resultants in quad coordinates (default)
 = 1 -> calculate stress resultants in triangle coordinates
 Note: local must be 1 for -kg and -kf
 relxs is the shear relaxation factor (default = 0.5)
 relxm is the membrane relaxation factor (default = 1.0)
 iso = 0 -> isotropic material (default)
 = 1 -> orthotropic material
 drill_stiff is the drilling dof stiffness factor (default=1.e-5)
 fdensity is the fluid weight density to calculate the hydrostatic
 stiffness

 Note 1: For an isotropic material, the values E1, G12, and nu12 are
 used.
 Note 2: Defaults are obtained for the above factors not by specifying
 0.0, but by omitting the input for the specific factors or by
 specifiying a negative value.

 nel is the element number
 node1 thru node5 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed

Page of 156 186

 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 face specifies the face on which the pressure acts
 = 0 -> no pressure acts ("dry" element) - default
 = -1 -> pressure acts on negative face (-z)
 = 1 -> pressure acts on positive face (+z)

 ---------- OPTION 2 ----------
 Command Syntax (option 2)
 min5s -subdivide range=?,? nxm=?,?

 Option 2 subdivides previously defined elements
 range specifies a range of element ID numbers; all elements
 in the range are divided
 nxm specifies how many elements to subdivide each element into.
 For example, nxm=2,3 would subdivide each element into 6
 elements; 2 in the 1-2 direction and 3 in the 1-4 direction.

 ---------- OPTION 3 ----------
 Command Syntax (option 3)
 min5s -cylinder n=nel mat=mat [print=print] [face=face] &
 p1=x1,y1,z1 p2=x2,y2,z2 R=R1,R2 CxL=Cseg,Lseg &
 [-ring_stiffeners LRseg=LRseg ring_mat=ring_mat &
 ring_node3=ring_node3] &
 [-spine spine_mat=spine_mat spine_node3=spine_node3 &
 tension_first=tension_first tension_last=tension_last]

 Option 3 generates a cylindrical mesh (min5s must have been inititalized
 previously with option 1, even if 0 elements were defined)
 nel is the first element number (of a sequential sequence)
 mat, print and face have the same meaning as in option 1
 p1 are the center coordinates of the cylinder start
 p2 are the center coordinates of the cylinder end
 R1,R2 are the radii at the start and end, respectively
 Cseg are the number of elements around the circumference
 Lseg are the number of elements along the length

 If -ring_stiffeners is specified, generate circumferential beam
 stiffeners:
 LRseg is the number of segments along the length separated by
 stiffneners
 ring_mat is the beam material number (define by the beam3d command)
 ring_node3 (see beam3d for definition of node3)

 If ring stiffeners exist, Lseg must be an integer mulitple of LRseg.
 If ring_node3 is blank, the node3 direction is along the length of
 the cylinder on the surface

 If -spine is specified, the cylinder is modeled by beam elements along
 the center of the cylinder. The nodes to the shell elements are
 constrained via rigid body constraints to the nodes of the spine. The
 mass and stiffness of the combined structure can be specified either by
 the material parameters on the shell elements or the beam elements. Be
 careful not to include the properties twice. Specifically, if the mass
 and/or stiffness properties are specified by the beam elements, then

Page of 157 186

 the shell elements should have zero mass and very small (but not zero)
 values for modulus and thickness (and vice versa). For this option,

 spine_mat is the beam material number (defined by the beam3d command)
 spine_node3 corresponds to node3 for the beam (for a vertical
 cylinder -1 is usually convenient)
 tension_first and tension_last, see beam3d

 Nodes and elements are numbered around the circumference and then down
 the length. The shell elements are defined such that the local x-axis
 is down the length of the cylinder, in the direction from p1 to p2,
 that is, the line from node1 to node2 is parallel to the axis and in
 the direction of p2. Nodes are numbered clockwise looking from the
 outside.

 ---------- ALL OPTIONS -------
 The 5-node min5s element is formed by four 3-node triangular (min3s)
 elements. Nodes 1 to 4 define the quadrilateral and are specified
 counterclockwise. Node 5 is the "interior" node, which is common to the
 four triangles. The connectivity of the triangles in terms of the
 quadrilateral nodes is 1-2-5, 2-3-5, 3-4-5, and 4-1-5. Normally, node 5
 is not specified, in which case it is located at the intersection of
 the diagonals (straight lines connecting nodes 1 and 3 and nodes 2 and
 4). If a node does not exist at this location, one is created. The
 restraint conditions are the same as for node "1" of the element, if
 the restraints have already been defined. Note that this
 "cross-diagonal" pattern is the preferred meshing strategy. Although
 nodes 1 to 4 are not forced to be coplanar, the element is meant to be
 used as a flat shell element.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1 and 2 are
 incremented by inc1; nodes 3 and 4 are incremented by inc2; and node 5,
 if specified, is incremented by inc3. gen is the number of elements to
 generate, so a sequence will have gen+1 elements. Multiple sequences
 can be specified; inc1_2d, inc2_2d, and inc3_2d are used to increment
 the node numbers from one sequence to the next. gen_2d is the number of
 additional sequences. The element numbers in two successive sequences
 differ by inc_el (default = numgen+1).

 Each triangle in the quadrilateral has its own "triangle" coordinate
 system. For each triangle, defined by nodes 1-2-3, the x-axis (axis-1)
 is directed from node 1 to node 2. The local y-axis (axis-2) lies in
 the plane defined by the vertex nodes, is normal to the x-axis, and is
 directed "toward" node 3. The local z-axis (axis-3) follows from the
 right-hand-rule. The quad coordinate system is the same as the triangle
 coordinates for triangle 1.

 The material parameters are specified in the quad coordinate system.
 thickness is used for the membrane and shear stiffnesses, while
 tbending is used for the bending stiffness. If tbending is not input,
 it will be set equal to thickness. thickness is also used to determine
 the mass (from the mass density).

 The normal pressures act in the local z-direction.

 End input with a blank line.

Page of 158 186

 On input, created arrays are:
 .min5s_mp(m,18) -> Ei, Gij, nuij, thickness, mass, local, C_s, C_m,
 iso, tbending, drill_stiff, fdensity
 .min5s_el(9,n) -> node1 - node5, material #, print code, face, ID#
 .min5s_pressure -> 1 if -pressure specified, otherwise 0

 The columns of .min5s_el are based on the number of defined elements, not
 the maximum ID# (i.e., ID numbers don't have to be sequential).

 For stiffness calculation, the shear and membrane relaxation factors are
 stored in .min5s_rlx(8,n) for later use in calculating the element state.

 If a nonzero mass density is specified, uniform (gravitational) body
 forces are applied if the vector gravity(4) has been defined. The 4
 components of gravity are: load pattern number, gx, gy, and gz, where gi
 is the gravitational acceleration in the global i direction.

 The hydrostatic stiffness is only calculated for "wet" elements, i.e.,
 with face = 1. The flag -pressure must be specified as well. The
 hydrostatic pressure is assumed to be in the first column of
 .nodal_pressure, as specified by the command nodal_pressure. In this
 case, the load pattern number should be 1 for this pressure. If multiple
 load patterns are used, they should all have the same pressures
 specified.

 For state calculation, global coordinates and the stress resultants in
 the quad coordinate system are put in .min5s_st(4*n,11) in the order x,
 y, z, Nx, Ny, Nxy, Mx, My, Mxy, Qx, and Qy. These values are calculated
 at the element centroid. If the value of local on the material card is
 specified to be 1, then the resultants in triangle coordinates are
 calculated instead. The element does not calculate the equivalent nodal
 forces in equilibrium with its stress state, and therefore cannot be used
 in a nonlinear analysis.

 The optimal stress resultants are stored in .min5s_op(n,11) in the same
 order as for .min5s_st. For a parallelogram, which consists of 4 constant
 stress elements in a cross diagonal pattern, the optimal stress at the
 intersection of the diagonals is the simple average of the stresses in
 the 4 triangles. For general quadrilaterals, this is an approximation. It
 is also an approximation for the shears, Qx and Qy, because they vary
 linearly within each triangle.

 For response calculation, global coordinates and stress resultants are
 calculated for local coordinates in min5s_lc(#pts,3). Results are put in
 .min5s_resp(#pts*4*n,11). See the explanation for state calculation for
 the order and for the option for resultants in triangle coordinates.

 For state output, stress resultants in .min5s_st are printed.

 For response output, coordinates and stress resultants in .min5s_resp are
 printed.

 For error estimation, the strain-energy option and the "user" option are
 supported. With strain-energy based error estimation, the "exact" stress
 resultants are expected in .min5s_xst(4*n,11*#pts), i.e., in the same
 form as .min5s_st; these values may be the result of some smoothing
 procedure. The finite element resultants are expected in
 .min5s_st(4*n,11*#pts). The number of integration points used for the

Page of 159 186

 element error is based on the number of columns of these matrices. If
 one-point integration is used, .min5s_st can be generated by the state
 command. The X,Y,Z coordinates and error of each integration point are
 put in .min5s_err(4*n,4*#pts). The integrated element error, relative
 error (element error/global error), and error density (element
 error/element area) are put in .min5s_elerr(n,3).

 The "user" error estimation option functions similarly, except that the
 error function is expected in .min5s_ruser(4*n,4*#pts), where #pts is the
 number of integration points and the first three columns contain the
 global coordinates. This option creates the same arrays as the
 strain-energy option. Because .min5s_ruser can contain the values of any
 function, this option can be used for the numerical evaluation of an
 integral over a two-dimensional domain. For example, if .min5s_ruser
 contains all ones, then the element and total volumes will be calculated.

 Note: If nodes 3 and 4 are equal, then the element degenerates to the
 min3s element. In general it is better to use min3s elements for
 triangles, but this option is included for convenience. However, the
 optimal stresses are not calculated correctly for triangular elements,
 and the error estimation is not implemented for them.

 For the theory of this element, see Tessler, A., "A C0 Anisoparametric
 Three-Node Shallow Shell Element," Computer Methods in Applied Mechanics
 and Engineering, v. 78, 1990, pp. 89-103. For the hydrostatic stiffness
 formulation, see Huang, L.L. and Riggs, H.R., "The hdyrostatic stiffness
 of flexible floating structures for linear hydroelasticity," Marine
 Structures, v. 13,2000, pp. 91-106.

 See Also
 min3s nodal_pressure pmin5s presponse pstate

pmin5s
 Command Syntax
 pmin5s
 Print min5s element data

 See Also
 min5s

min4t
 Quadrilateral, linear, Mindlin shell element. Consists of 4 min3s
 (triangular) elements with the interior node kinematically constrained to
 the 4 vertex nodes. Shear relaxation is included.

 Command Syntax
 min4t m=? n=? [q=q_vec] [version=version#] [constraint=constraint#]
 m=mat# e=E1,E2,E3 g=G12,G23,G13 nu=nu12,nu23,nu13
 t=thickness [mass=mass] [local=local] [gamma=] [C_s=C_s] &
 [iso=iso] (1 record/matl)
 n=nel nodes=node1,node2,node3,node4 mat=mat [print=print] &
 [pat=pat q=q1,q2,q3,q4] [inc=inc1,inc2 gen=gen]
 [inc_2d=inc1_2d,inc2_2d gen_2d=gen_2d inc_el=inc_el]

 m is the number of different materials
 n is the number of elements

Page of 160 186

 q_vec is the name of a vector in the database for which the ith element
 is the normal pressure at node i

 version# controls application of shear relaxation & constraints
 version# = 1 -> relax each triangle, then apply constraints (default)
 2 -> apply the constraints on the 4 triangles
 and relax the quad (not implemented)
 3 -> apply the constraints on the 4 triangles and
 relax each triangle (in quad DOFs) separately
 constraint# specifies the constraints for the 2 theta DOFs:
 = 1 -> use least squares (default)
 2 -> use 2 constraints only
 3 -> use interior constraints only

 mat# is the material number
 E1, E2, E3 are the moduli of elasticity
 G12, G23, G13 are the shear moduli
 nu12, nu23, nu13 are the Poisson ratios
 thickness is the element thickness
 mass is the mass per unit volume
 local = 0 -> stress resultants in quad coordinates (default)
 = 1 -> stress resultants in triangle coordinates
 gamma is the penalty parameter for the membrane drilling DOFs
 default value is G12 * 10^-4
 C_s is the shear relaxation factor (default = 0.6)
 iso = 0 -> isotropic material
 = 1 -> orthotropic material.

 nel is the element number
 node1 thru node4 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1 and inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d and inc2_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 pat is the load pattern number for the normal pressures
 q1,q2,q3,q4 are normal pressures for nodes (these values override those
 defined by q_vec, if any.)

 The 4 node min4t element is formed by four 3 node triangular elements.
 Nodes 1 to 4 define the quadrilateral. "Node 5" is an internal
 "virtual" node and is common to the four triangles. The connectivity of
 the triangles in terms of the quadrilateral nodes is 1-2-5, 2-3-5,
 3-4-5, and 4-1-5. Node 5 is located at the intersection of the
 diagonals (straight lines connecting nodes 1 and 3 and nodes 2 and 4).
 Although nodes 1 to 4 are not forced to be coplanar, the element is
 meant to be used as a flat shell element.

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, and gen. In a linear sequence, nodes 1 and 2 are incremented by
 inc1; and nodes 3 and 4 are incremented by inc2. gen is the number of
 elements to generate; hence, a sequence will have gen+1 elements.
 Multiple sequences can be specified; inc1_2d and inc2_2d are used to
 increment the node numbers from one sequence to the next. gen_2d is the
 number of additional sequences. The element numbers in two successive
 sequences differ by inc_el (default = numgen+1).

Page of 161 186

 For each triangle, the local x-axis (1) is directed from node 1 to node
 2. The local y-axis (2) lies in the plane defined by the vertex nodes,
 is normal to the x-axis, and is directed "toward" node 3. The local
 z-axis (3) follows from the right-hand-rule. The "quad" coordinate
 system is the same as local coordinate system for triangle 1.

 For an orthotropic material, the parameters are specified in the quad
 coordinate system.

 The normal pressures act in the local z-direction.

 End input with a blank line.

 On input, created arrays are:
 .min4t_mp(m,14) -> Ei, Gij, nuij, thickness, mass, local, C_s, iso
 .min4t_el(6,n) -> node1 - node4, material #, print code
 .min4t_node5(3,n) -> x, y, z coordinates of "node 5"
 .min4t_q(5,n) -> pat, q1, q2, q3, q4
 .min4t_ver(1) -> version#
 .min4t_const(1) -> constraint#

 During stiffness calculation, the shear relaxation factors are stored in
 .min4t_rlx(4*n) for later use in calculating the element state.

 If a nonzero mass density is specified, uniform (gravitational) body
 forces are applied if the vector gravity(4) has been defined. The 4
 components of gravity are: load pattern number, gx, gy, and gz, where gi
 is the gravitational acceleration in the global i direction.

 For state calculation, global coordinates and bending stress resultants
 are stored in .min4t_stb(5*n,8) in the order x, y, z, Mx, My, Mxy, Qx,
 and Qy. These values are calculated at the triangle centroids. Each 5th
 row is reserved for "optimal"stresses, which are the average of the 4
 triangle centroidal values and are located at the cross diagonal. If the
 value of local for the material is 1, then the bending resultants are
 calculated in the local triangle coordinate systems. The global
 coordinates and the membrane stress resultants at the 2x2 Gauss points
 are stored in .min4t_stm(n,24) in the order x, y, z, Nx, Ny, Nxy. The
 membrane resultants are always in quad coordinates.

 The element does not calculate the equivalent nodal forces in equilibrium
 with its stress state, and therefore cannot be used in a nonlinear
 analysis.

 The response option has not been implemented.

 The error estimation option has not been implemented.

 For state output, the stress resultants in .min4t_stb and .min4t_stm are
 printed.

 For the theory of min3s, see Tessler, A., "A C0 Anisoparametric
 Three-Node Shallow Shell Element," Computer Methods in Applied Mechanics
 and Engineering, v. 78, 1990, pp. 89-103.

 See Also
 min3s min5s pmin4t pstate

Page of 162 186

pmin4t
 Command Syntax
 pmin4t
 Print min4t element data

 See Also
 min4t

min6
 6-node, 18-DOF, linear, triangular Mindlin plate bending element.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 min6 m=? n=? [q=q_vec]
 m=mat# e=E1,E2,E3 g=G12,G23,G13 nu=nu12,nu23,nu13 &
 t=thickness [mass=mass] [local=local] [C_s=C_s]
 [iso=iso] (1 record/matl)
 n=nel mat=mat nodes=node1,node2,node3,node4,node5,node6 &
 [print=print] [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d &
 inc_el=inc_el] [pat=pat q=q1,q2,q3,q4,q5,q6]

 m is the number of different materials
 n is the number of elements
 q_vec is the name of a vector in the database for which the ith element
 is the normal pressure at node i

 mat# is the material number
 E1, E2, E3 are the moduli of elasticity
 G12, G23, G13 are the shear moduli
 nu12, nu23, nu13 are the Poisson ratios
 thickness is the element thickness
 mass is the mass per unit volume
 local = 0 -> stress resultants in quad coordinates (default)
 C_s is the shear relaxation factor (default = 0.0)
 iso = 0 -> isotropic material (default)
 = 1 -> orthotropic material

 nel is the element number
 node1 thru node6 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1, inc2 inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3-2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences
 pat is the load pattern number for the normal pressures
 q1,q2,q3,q4,q5, q6 are normal pressures for nodes (these values
 override those defined by q_vec, if any.)

 Nodes 1 to 3 are the corner nodes and are specified 3 node triangular
 elements. Nodes 1 to 3 define the counterclockwise. Nodes 4 to 6 are
 the midnodes.

Page of 163 186

 A "linear sequence" of elements can be generated by specifying inc1,
 inc2, inc3, and gen. In a linear sequence, nodes 1, 2, and 4 are
 incremented by inc1; nodes 5, 6 are incremented by inc2; and nodes 3 is
 incremented by inc3. gen is the number of elements to generate, so a
 sequence will have gen+1 elements. To generate a 2D patch of elements,
 multiple sequences can be specified; inc1_2d, inc2_2d, and inc3_2d are
 used to increment the node numbers from one sequence to the next.
 gen_2d is the number of additional sequences. The element numbers in
 two successive sequences differ by inc_el (default = numgen+1).

 End input with a blank line.

 The global coordinate system is the same as local coordinate system for
 triangle.

 For an orthotropic material, the parameters are specified in the global
 coordinate system.

 The normal pressures act in the local z-direction.

 On input, created arrays are:
 .min6_mp(m,14) -> Ei, Gij, nuij, thickness, mass, local, C_s, iso
 .min6_el(6,n) -> node1 - node6, material #, print code
 .min6_q(7,n) -> pat, q1, q2, q3, q4, q5, q6

 During stiffness calculation, the shear relaxation factors are stored
 in .min6_rlx(4*n) for later use in calculating the element state.

 If a nonzero mass density is specified, uniform (gravitational) body
 forces are applied if the vector gravity(4) has been defined. The 4
 components of gravity are: load pattern number, gx, gy, and gz, where gi
 is the gravitational acceleration in the global i direction.

 For state calculation, global coordinates and bending stress resultants
 are stored in .min6_stb(n, 4*8) in the order x, y, z, Mx, My, Mxy, Qx,
 and Qy. These values are calculated at the 4 Gauss points of the
 triangle.

 The element does not calculate the equivalent nodal forces in equilibrium
 with its stress state, and therefore cannot be used in a nonlinear
 analysis.

 For response calculation, global coordinates and bending stress
 resultants at the nodes are stored in .min6_respb(n,6*8) in the order x,
 y, z, Mx, My, Mxy, Qx, and Qy.

 The error estimation option has not been implemented.

 For state output, the stress resultants in .min6_stb are printed.

 For response output, the stress resultants in .min6_respb are printed.

 MIN6 is an anisoparametric Mindlin plate bending element with a cubic
 variation of transverse displacement and quadratic variation for
 rotational displacements.

 See Also
 min3s min5s min4t pmin6 presponse pstate

Page of 164 186

pmin6
 Command Syntax
 pmin6
 Print min6 element data

 See Also
 min6

nbeam2d
 Large displacement, elastic 2D beam element

 nbeam2d m=? n=? [nl=?] [-xy] [-xz] [-yz]
 m=matl e=emodulus g=gmodulus [mbar=density] [mxy=mx,my] [mI=mI] &
 [wbar=wbar] a=area i=moi [as=as] &
 [Cm=cmx,cmy] [Cd=cdx,cdy] (1 record/material)
 n=nel mat=mat nodes=node1,node2 [print=print] [gen=gen inc=inc] &
 [tension=tension] [-xy] [-xz] [-yz]

 m is the number of different materials
 n is the number of elements
 nl = 1 -> linear stiffness
 = 2 -> nonlinear and geometric stiffness (default)
 -xy or -xz or -yz specifies the plane in global coordinates

 matl is the material number
 emodulus is the modulus of elasticity
 gmodulus is the shear modulus
 density or mx,my is the mass/unit length
 mI is mass moment of inertia (per unit length) in local coordinates
 wbar is the weight density (per unit length)
 area is the cross sectional area
 moi is the moment of inertia
 as is the shear area (0 -> shear deformation is ignored)
 Cm are the effective added mass coefficients (see below)
 Cd are the effective drag coefficients (see below)

 nel is the element number
 node1 and node2 are the node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate
 tension is the initial tension (for stiffness calculation only)

 End input with a blank line.

 The 2-D large displacement, elastic beam element assumes small strains.
 Hence, the forces are calculated as for a linear beam element, except
 that first the rigid body rotation is removed from the displacements.

 The element must lie in a plane parallel to the global X-Y (default),
 X-Z, or Y-Z planes. The default for all elements is on the nbeam2d
 record; this can be overwritten on a member basis on the member input
 record. The element local z-axis is in the global Z, -X, and Z
 directions, respectively.

Page of 165 186

 On input, created arrays are:
 .nbeam2d_mp(m,13) -> emodulus, gmodulus, wbar, area, moi, as, mx,
 my, mI, cmx, cmy, cd, cy
 .nbeam2d_el(n,4) -> node1, node2, material, print code
 .nbeam2d_len(n) -> element length
 .nbeam2d_st(n,4) -> Axial Force, V, M at node1, M at node2
 .nbeam2d_dir(n) -> 1 -> X-Y; 2 -> X-Z; 3 -> Y-Z

 mx and my are the mass densities per unit length in local coordinates. If
 density is specified, then mx=my=density. This element computes a lumped
 mass matrix in local coordinates. However, when transformed to global
 coordinates, it will no longer be diagonal unless mx = my or the element
 is parallel to one of the global axes. If neither of these conditions is
 met, then a global diagonal mass matrix should not be used. Note that for
 large displacements, the mass matrix will also need to be reformulated if
 mx and my are not the same, and even if the element were initially
 parallel to a global axis, it will not in general remain parallel.

 If the weight density is specified, it always acts in the -Z (global)
 direction. Therefore, if it is used the element should be in the X-Z or
 the Y-Z planes. The weight is always applied if it is specified.

 cmx and cmy are the effective mass coefficients for a "Morison"
 treatement of fluid loading. These are effectively densities per unit
 length in local coordinates and will typically be equal to 1/2*rho*Cm*D,
 where rho is the fluid density, Cm is the actual mass coefficient, and D
 is the "diameter". The program will multiply these by L/2 for a lumped
 formulation, where L is the original length. Similarly, cdx and cdy are
 effective damping coefficients. Note: both the added mass and drag terms
 are on the right-hand-side only. The mass term is multiplied by the fluid
 acceleration to obtain a load, and the drag term is multiplied by
 abs(v-u)(v-u) to obtain a quadratic drag loading. The component of the
 added mass that is multiplied by the structure acceleration is included
 by specifying structure mass densities (mx,my) that include the added
 mass; the user is responsible for providing these modified mass
 densities.

 For state calculation, element forces are put in .nbeam2d_st.

 For response calculation, element does nothing.

 For state output, results in .nbeam2d_st are printed.

 For response output, no results are printed.

 See Also
 pnbeam2d pstate presponse

pnbeam2d
 Command Syntax
 pnbeam2d
 Print nbeam2d element data

 See Also
 nbeam2d

Page of 166 186

pbridge
 Elastic, 3-D pontoon bridge element

 Command Syntax
 pbridge s=? n=? [maxpts=?] [-kg] gravity=? rho=? kvisc=? &
 depth=? [option=?]
 s=section e=emodulus g=gmodulus mbar=density w=weight a=area j=jsect &
 iy=iyy iz=izz asy=asy asz=asz road_width=? road_depth=? KC=? KG=? &
 [Cp=?] [Cptable=?] #pts=? [p1=?,? p2=?,? p3=?,?] (1 record/section)
 n=nel nodes=node1,node2 mat=mat print=print inc=inc gen=gen &
 node3=node3 ndiv=ndiv tension=tension

 s is the number of different module sections
 n is the number of elements
 maxpts is the maximum number of points to define the
 module cross sections (default=1)
 -kg is a flag to include geometric stiffness
 gravity is the acceleration of gravity
 rho is the mass density of water
 kvisc is the kinematic viscosity of the water
 depth is the water depth
 option determines the method to calculate drag
 = 0 -> viscous form drag only (default)
 = 1 -> viscous form drag + venturi lift

 section is the section number
 emodulus is the modulus of elasticity
 gmodulus is the shear modulus
 density is the mass/unit length
 weight is the in-air weight/unit length
 area is the cross sectional area
 jsect is the torsional inertia
 iyy,izz are moments of inertia in local coordinates
 asy, asz are the shear areas in y and z, respectively
 (0 -> the corresponding shear deformation is ignored)
 road_width is the total width of the roadway
 road_depth is the total depth of the roadway
 KC is the vertical distance from the keel to the elastic axis
 KG is the vertical distance from the keel to the center of weight
 Cp is the pressure drag coefficient
 Cptable is the number of the table with Cp
 #pts is the number of points to define the section geometry
 pj is jth of #pts coordinate pairs in the form y,z (see below)

 nel is the element number
 node1 and node2 are the node numbers
 mat is the section/material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate
 node3 lies in the local x-z plane
 tension is the inital tension (for geometric stiffness only)
 ndiv is the number of divisions at which the internal forces are
 calculated in each element (default=4)

 Either a constant drag coefficient, Cp, can be specified, or a table
 of Cp values, as a function of draft and trim, can be specified. In

Page of 167 186

 the latter case, the table number is specified here, and the table
 itself is specified with the cp_tables command.

 For hydrostatic calculations, the cross section is assumed to be a
 polygon. To define the polygon only, local y-z axes are defined such
 that z is parallel to the global Z axis and z=0 corresponds to the
 bottom of the roadway. The cross section is assumed to be symmetric
 about z. The cross section consists of a rectangular middle section
 and two "bow" sections on either side. The rectangular middle section
 is defined by the road_width and road_depth. The "right" bow section,
 when the local y and z axes are directed to the right and up,
 respectively, is defined by the #pts pj. (#pts cannot be greater than
 maxpts.) The points are specified counterclockwise. It is not
 necessary to specify the two end points corresponding to the end of
 the roadway section, because these two points are generated
 automatically. The program reflects the cross section about the
 z-axis to generate the other half. Hence, for a given section, a
 total of 2*(#pts+2) points are used to define completely the polygon
 cross section.

 The initial local (principal) axes of the cross section are defined
 as follows:
 The local x-axis is directed from node1 to node2
 The local y-axis = (x-axis) X (vector from node1 to node3)
 The local z-axis = (x-axis) X (y-axis)
 If node3 is -1, -2, or -3, then the "vector to node3" is a unit
 vector in the direction of the negative X, Y, or Z global axes,
 respectively.

 End input with a blank line.

 On input, created arrays are:
 .pbridge_mp(s,17) -> emodulus, gmodulus, density, area, jsect,
 iyy, izz, asy, asz, weight, KC, KG, Cp,
 road_width, road_depth, #pts, Cptable
 .pbridge_sec(mpts,2,s) -> xi, yi for each section; mpts=2*(maxpts+2)
 .pbridge_el(6,n) -> node1, node2, section, print code, node3, ndiv
 .pbridge_len(n) -> element length
 .pbridge_st(n,12)-> Axial Force, Vy, Vz, Torque, My, Mz at node1
 Axial Force, Vy, Vz, Torque, My, Mz at node2
 .pbridge_kg -> 0 or 1; w/o or w/ geometric stiffness

 This element calculates a lumped mass matrix with zero rotational
 inertia.

 For state calculation, element forces are put in .pbridge_st.

 For response calculation, element does nothing.

 For state output, results in .pbridge_st are printed, but using beam sign
 convention (torque at nodej is positive in the local x-axis).

 For response output, results are printed for ndiv sections. If the
 unformatted write options on the presponse command are specified, the
 results are written to the file project_name.pbr. The data is written:
 element #, ndiv+1, and for each output section: axial force, Vy, Vz,
 torque, My, Mz.

Page of 168 186

 This is a special-purpose 3-D beam element designed to model floating
 pontoon bridges. It assumes small strains and small rotations. However,
 it includes the geometric stiffness, hydrostatic stiffness/forces, and
 drag, and these quantities can change as a result of displacement. Hence,
 it incorporates some nonlinear behavior, and an iterative solution is
 usually required.

 The element assumes:

 1. The still-water-plane is at (global) z=0
 2. Gravity acts in the negative Z direction
 3. The initial Z-coordinates of the modules should be determined
 based on the weight and the buoyancy.

 See Also
 cp_tables ppbridge pstate presponse

ppbridge
 Command Syntax
 ppbridge
 Print pbridge element data

 See Also
 pbridge

ntruss
 Two node large displacement truss element

 Command Syntax
 ntruss m=? n=? [nl=?]
 m=matl e=emodulus a=area [mbar=density] [-no_compression] (1 rec/matl)
 n=nel nodes=node1,node2 mat=mat [print=print] &
 [inc=inc] [gen=gen] [tension=tension] [Lo=length] &
 [ecc1=delta_x,delta_y,delta_z] [ecc2=delta_x,delta_y,delta_z]

 m is the number of different materials
 n is the number of elements
 nl = 1 -> linear stiffness
 = 2 -> nonlinear and geometric stiffness (default)

 matl is the material number
 emodulus is the modulus of elasticity
 area is the cross sectional area
 density is the mass/unit length
 -no_compression indicates tension-only material

 nel is the element number
 node1 and node2 are the node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate
 tension is the inital tension
 length is the unstretched length
 ecc1 are the offsets, in global coordinates, of the element start from
 node1

Page of 169 186

 ecc2 are the offsets, in global coordinates, of the element end from
 node2

 End input with a blank line.

 The tension specified by tension= is only used to provide an initial
 stiffness to stabilize a slack initial configuration. The value is not
 used subsequently. The length specified by Lo= is the unstretched length
 (corresponding to zero force). The default unstretched length is the
 initial distance between the two ends. If Lo is specified, then any value
 specified for tension is not used; rather the initial tension is
 calculated.

 If -no_compression is specified for a material, then the corresponding
 elements can only resist tension.

 On input, created arrays are:
 .ntruss_mp(m,4) -> modulus, area, density, compression code
 .ntruss_el(4,n) -> node1, node2, material, print code
 .ntruss_len(n) -> unstretched length
 .ntruss_st(n) -> element force
 .ntruss_ecc(n) -> eccentricity code
 .ntruss_ecc2(6,n)-> eccentricities (delta_x,delta_y,delta_z)

 The element calculates a diagonal mass matrix only.
 For state calculation, element forces are put in .ntruss_st.
 For response calculation, element does nothing.
 For state output, the axial forces in .ntruss_st are printed.

 For response output, the element state is printed. If the unformatted
 write options on the presponse command are specified, the results are
 written to the file project_name.ntr. The data is written: element #,
 axial force.

 constraints associated with an offset of the element end with the
 corresponding node are based on linear kinematics. Specifically, for
 nonzero offsets, the element end is 'slaved' to the node, and the
 displacements at the element end are determined based on rigid body,
 linear kinematics.

 See Also
 pntruss pstate presponse

pntruss
 Command Syntax
 pntruss
 Print ntruss element data

 See Also
 ntruss

smth1c
 One-dimensional, cubic smoothing element
 Implementation assumes element is parallel to X-axis

 Command Syntax

Page of 170 186

 smth1c n=?
 n=nel nodes=node1,node2 mat=mat [print=print] [inc=incr gen=gen]

 n = number of elements

 nel is the element number
 node1 and node2 are the node numbers
 mat is not used for this element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate.

 End input with a blank line.

 On input, created arrays are:

 .smth1c_el(n,4) -> node1, node2, material, print code
 .smth1c_ls(n,10) -> length, x-coord, stress, stress gradient for local
 coordinates -1, 0, 1

 For stiffness calculation, data points are expected in array
 smth1c_in(#pts,2) -> x-coord, stress. The vector .smth1c_indx1(#pts) is
 created that matches data points with elements.

 For state calculation, results are put in .smth1c_ls.

 For response calculation, position, stress and stress gradient are
 calculated for local coordinates (-1 to 1) in smth1c_lc, if it exists, or
 for global coordinates in smth1c_gc. Results are put in .smth1c_resp. If
 .smth1c_gc exists, vector smth1c_indx2 is created with element number
 corresponding to each data point.

 For response output, results in .smth1c_ls are printed.

 For state output, results in .smth1c_resp are printed.

 See Also
 psmth1c pstate presponse

psmth1c
 Command Syntax
 psmth1c
 Print smth1c element data

 See Also
 smth1c

smth1l
 One-dimensional, 2 to 4 node, discrete least squares smoothing element.
 Implementation assumes element is parallel to the X-axis.

 Command Syntax
 smth1l n=?
 n=nel nodes=node1,node2,...,node4 mat=mat [print=print] &
 [inc=inc gen=gen]

Page of 171 186

 n is the number of elements

 nel is the element number
 node1 thru node4 are node numbers (2,3 or 4 nodes)
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc is node increment for generation
 gen is the number of elements to generate

 End input with a blank line.

 On input, created arrays are:
 .smth1l_el(n,7) -> node1 - node4, material, print code, #nodes
 .smth1l_len(n) -> element length

 For stiffness calculation, coordinates and variables to be smoothed are
 expected in array .smth1l_in.

 For state calculation, coordinate and stresses are put in .smth1l_st (NOT
 IMPLEMENTED).

 For response calculation, position, stress and stress gradient are
 calculated for local coordinates (-1 to 1) in smth1l_lc, if it exists, or
 for global coordinates in smth1q_gc. Results are put in
 .smth1l_resp(*,3).

 For state output, results in .smth1l_st are printed.

 For response output, results in .smth1l_resp are printed.

 See Also
 psmth1l pstate presponse

psmth1l
 Command Syntax
 psmth1l
 Print smth1l element data
 See Also
 smth1l

smth1q
 One-dimensional, quadratic smoothing element
 Implementation assumes element is parallel to the X-axis

 Command Syntax
 smth1q m=? n=?
 m=mat l=lambda norm=norm pen_norm=pen_norm (1 record/material)
 n=nel nodes=node1,node2 mat=mat print=prin [inc=inc gen=gen]

 m = number of different "materials" (lamda values)
 n = number of elements

 mat is the material number
 lambda is the penalty parameter
 norm specifies normalization of the error term
 =0 -> no normalization

Page of 172 186

 =1 -> normalize by # data points in the element
 >1 -> normalize by the value specified
 pen_norm specifies normalization of the penalty term
 =0 -> no normalization
 >1 -> normalize by the value specified

 nel is the element number
 node1 and node2 are the node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 incr is the node increment used for generation
 gen is the number of elements to generate.

 End input with a blank line.

 Arrays created on input:
 .smth1q_mp(m,3) -> lamdba, norm, and pen_norm
 .smth1q_el(n,4) -> node1, node2, material, print code
 .smth1q_ls(n,8) -> length, and X-coord, stress for local coordinates
 -1, 0, 1. Last entry is difference between
 derivative and slope.

 For stiffness calculation, data points are expected in array
 smth1q_in(#pts,2) -> X-coord, stress. The vector .smth1q_indx1(#pts) is
 created that matches data points with elements.

 For state calculation, results are put in .smth1q_ls.

 For response calculation, position, stress, and stress gradient are
 calculated for local coordinates (-1 to 1) in smth1q_lc, if it exists, or
 for global coordinates in smth1q_gc. If smth1q_gc exists, vector
 .smth1q_indx2 is created with element number corresponding to each point.
 Results are put in .smth1q_resp.

 For state output, results in .smth1q_ls are printed.

 For response output, results in .smth1q_resp are printed.

 See Also
 psmth1q pstate presponse

psmth1q
 Command Syntax
 psmth1q
 Print smth1q element data

 See Also
 smth1q

smth2l
 2-D, 3 to 9 node, discrete least squares smoothing element.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 smth2l n=? [-value]
 n=nel nodes=node1,node2,...,node 9 [print=print] [gauss=gauss] &

Page of 173 186

 [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d inc_el=inc_el]

 n is the number of elements
 -value is a response code, as explained below

 nel is the element number
 node1 thru node9 are node numbers (3 to 9 nodes)
 mat is useless for this element
 print .ne. 0 -> element results not printed
 gauss is useless for this element
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 This data line is identical with that of d2l3to9 command.

 Nodes 1 to 4 are the corner nodes for quad elements and are specified
 counterclockwise. Nodes 5 to 8 are the midnodes on the edges (see
 sketch below), while node 9 is the center node. For triangular
 elements, only the first three nodes are to be specified.

 Element generation is done by specifying inc1, inc2 & inc3. Nodes 1,
 2, and 5 are incremented by inc1. Nodes 6, 8, and 9 are incremented by
 inc2. Nodes 3, 4, and 7 are incremented by inc3.

 End input with a blank line.

 On input, created arrays are:
 .smth2l_el(10,n) -> node1 - node9, print
 .smth2l_rtype -> 0 if -value is not specified; 1 if specified

 For stiffness calculation, data points are expected in
 smth2l_in(#pts,numvar+2) -> X, Y coordinates, numvar variables. Each
 variable (column of values) is smoothed separately, except they must be
 defined at the same X,Y coordinates. The vector .smth2l_indx(#pts) is
 created with the element number each X,Y pair falls in. In this
 description, it is assumed that the variables are stresses, although they
 may be anything.

 For state calculation, X-Y coordinate and stresses at 9 nodal points (at
 local coordinates xi=-1, 0, +1 and eta=-1, 0, 1) are put in
 .smth2l_st(node#,numvar+2).

 The response calculation depends on the value of .smth2l_rtype. If it is
 0, X,Y coordinates, stress, and stress derivatives are calculated for
 local coordinates specified in smth2l_lc(*,2), if it exists, or for
 global coordinates in smth2l_gc(*,2). Results are put in
 smth2q_resp(*,5). If smth2l_gc exists, smth2l_index(*) is created with
 element number corresponding to each data point. This is done only for
 the first variable in smth2l_in. If _rtype is 1, then the smoothed values
 for all variables in smth2l_in are put in .smth2l_resp(*,numvar+2) but
 derivative information is not calculated.

 For state output, results in .smth2l_st are printed.

Page of 174 186

 For response output, results in .smth2l_resp are printed.

 node4 node7 node3
 X---------------------X---------------------X
 | |
 | |
 | |
 | |
 | |
 X node8 X X node6
 | node9 |
 | |
 | |
 | |
 | |
 X---------------------X---------------------X
 node1 node5 node2

 See Also
 psmth2l pstate presponse d2l3to9

psmth2l
 Command Syntax
 psmth2l
 Print smth2l element data

 See Also
 smth2l

smth2q
 2-D, quadratic, triangular smoothing element. Implementation assumes that
 element is in the XY plane.

 Command Syntax
 smth2q m=? n=? [-value] [-quad]
 m=mat# lambda=lambda option=option norm=norm &
 pen_norm=pen_norm tol=tol lambda2=lambda2
 alpha=? eps=? Ao=? gamma=?
 n=nel nodes=node1,node2,node3,node4 mat=mat [print=print] &
 [inc=inc1,inc2 gen=gen]
 [inc_2d=inc1_2d,inc2_2d gen_2d=gen_2d inc_el=inc_el]

 m is the number of different materials
 n is the number of elements
 -value is a response code, as explained below
 -quad indicates quadrilateral rather than element numbers are
 specified; see note below.

 mat# is the material number
 lambda is the first penalty parameter
 option for the penalty stiffness term
 = 1 -> use discrete edge constraints (default)
 = 2 -> use integrated form
 norm specifies normalization of the error term

Page of 175 186

 = 0 -> no normalization
 = 1 -> normalize by # data points in the element
 > 1 -> normalize by the value specified
 pen_norm specifies normalization of the penalty term
 = 0 -> no normalization
 > 1 -> normalize by the value specified
 tol is a tolerance to map global to local coordinates
 lambda2 is the penalty parameter on the curvature term
 alpha, eps, Ao, and gamma define discrete weights, as explained below.

 nel is the element number
 node1 thru node4 are node numbers
 mat is the material number for the element
 print .ne. 0 -> element results not printed
 inc1, inc2 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d and inc2_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 Lambda = 100 is suggested for this element.

 If -quad is specified, all "element" numbers (n, nel, inc_el) refer to
 a quadrilateral number instead. Quad "i" is discretized into elements
 4*i-1 to 4*i. This option is given so that the element input data for
 d2l3to9 can be used directly to develop a smoothing mesh.

 The values alpha (default=0), eps (default=0), Ao (default=0), and
 gamma (default=2) are used to define the weight w_q on the discrete
 square error term for the qth data point. If Ao > 0, then

 exp(-alpha * A_bar^gamma)
 w_q = ---------------------
 A_bar^gamma + eps

 where A_bar is the area of the smoothing element for point q divided by
 Ao. This form of w_q weights data points associated with smaller
 elements more than data points associated with larger elements. Ao
 should be specified to be a "nominal" element area. If the element area
 = Ao, w_q = 1. If Ao is less than or equal to 0, w_q = 1.

 Three Nodes Specified
 Nodes 1 to 3 are the vertex nodes for the element and are specified
 counterclockwise.

 A "linear sequence" of elements can be generated by specifying
 inc1, inc2, and gen. In a linear sequence, nodes 1 and 2 are
 incremented by inc1, and node 3 is incremented by inc2. gen is the
 number of elements to generate, so a sequence will have gen+1
 elements. Multiple sequences can be generated: inc1_2d and inc2_2d
 are used to increment the node numbers from one sequence to the
 next. gen_2d is the number of additional sequences. The element
 numbers in two successive sequences differ by inc_el (default =
 numgen+1).

 Four Nodes Specified
 The nodes are the four corner nodes of a general quadrilateral and
 are specified counterclockwise. The quad is meshed with 4

Page of 176 186

 triangular elements in a cross-diagonal pattern (recommended mesh
 for this element).The coordinates of the fifth (internal) node are
 calculated. If a node exists at these coordinates, it is used for
 node 5, otherwise a new node is created. This option then creates 4
 triangular elements (nodes 1-2-5, 2-3-5, 3-4-5, and 4-1-5) numbered
 from nel to nel+3.

 A "linear sequence" of elements can be generated by specifying
 inc1, inc2, and gen. In a linear sequence, nodes 1 and 2 are
 incremented by inc1, and nodes 3 and 4 are incremented by inc2. gen
 is the number of quads to generate, so a sequence will have
 4*(gen+1) triangular elements. Multiple sequences can be generated:
 inc1_2d and inc2_2d are used to increment the node numbers from one
 sequence to the next. gen_2d is the number of additional sequences.
 The element numbers in two successive sequences differ by inc_el
 (default = 4*(numgen+1)).

 End input with a blank line.

 On input, created arrays are:
 .smth2q_mp(m,6) -> lambda, option, norm, pen_norm, tol (def = 1.e-8),
 lambda2
 .smth2q_el(5,n) -> node1 - node3, material #, print code
 .smth2q_rtype -> 0 if -value is not specified; 1 if specified

 For stiffness calculation, data points are expected in
 smth2q_in(#pts,numvar+2) -> X, Y coordinates, numvar variables. Each
 variable (column of values) is smoothed separately, except they must be
 defined at the same X,Y coordinates. The vector .smth2q_indx(#pts) is
 created with the element number each X,Y pair falls in. In this
 description, it is assumed that the variables are stresses, although they
 may be anything.

 For state calculation, X,Y coordinates, stress, stress derivatives and
 the slopes at the element centroids are put in .smth2q_st(n,7). This is
 done only for the first variable (column 3) in smth2q_in.

 The response calculation depends on the value of .smth2q_rtype. If it is
 0, X,Y coordinates, stress, stress derivatives and the slopes are
 calculated for local (area) coordinates specified in smth2q_lc(*,3), if
 it exists, or for global coordinates in smth2q_gc(*,2). Results are put
 in smth2q_resp(*,7). If smth2q_gc exists, smth2q_indx2(*) is created with
 element number corresponding to each data point. This is done only for
 the first variable in smth2q_in. If _rtype is 1, then the smoothed values
 for all variables in smth2q_in are put in .smth2q_resp(*,numvar+2) but
 derivative information is not calculated.

 For state output, results in .smth2q_st are printed.

 For response output, results in .smth2q_resp are printed.

 This element is used to smooth stresses over a two-dimensional field
 based on discrete least squares. The triangular element has 3 DOFs/node:
 1 stress and 2 "slopes". The stress and slopes are interpolated
 independently; the penalty parameter lambda is used to enforce
 compatibility between the slopes and the derivatives of the stress. For
 details, see Tessler, A., Riggs, H.R., and Macy, S.C., "Application of a
 Variational Method for Computing Smooth Stresses, Stress Gradients, and

Page of 177 186

 Error Estimation in Finite Element Analysis," MAFELAP VIII, Brunel
 University, England, April 27-30, 1993.

 See Also
 psmth2q state response

psmth2q
 Command Syntax
 psmth2
 Print smth2q element data

 See Also
 smth2q

smthspr
 2-D, 3 to 9 node SPR smoothing element.
 Implementation assumes element is in the X-Y plane.

 Command Syntax
 smthspr n=? [-value] [vtex_num=?] r=1,x,y,x^2,xy,y^2,x^2y,xy^2,x^2y^2
 n=nel nodes=node1,node2,...,node9 [print=print] &
 [gauss=gauss] [inc=inc1,inc2,inc3 gen=gen] &
 [inc_2d=inc1_2d,inc2_2d,inc3_2d gen_2d=gen_2d inc_el=inc_el]

 n is the number of elements
 -value is a response code (options not implemented)
 vtex_num is the minimum # elements connected to a vertex node
 (default=3)
 r= identifies which terms in the polynomial to include:
 0 -> do not include the term
 1 -> include the term

 nel is the element number
 node1 thru node9 are node numbers (3 to 9 nodes)
 mat is unused (see below)
 print .ne. 0 -> element results not printed
 gauss is unused (see below)
 inc1, inc2, inc3 are node increments in a "linear sequence"
 gen is the number of elements to generate in a sequence
 inc1_2d, inc2_2d, inc3_2d are node increments between sequences
 gen_2d is the number of linear sequences to generate
 inc_el is the element increment between sequences

 mat and gauss are included here so that the input is identical to the
 input for element d2l3to9.

 Nodes 1 to 4 are the corner nodes for quad elements and are specified
 counterclockwise. Nodes 5 to 8 are the midnodes on the edges (see
 sketch below), while node 9 is the center node. For triangular
 elements, only the first three nodes are to be specified.

 Element generation is done by specifying inc1, inc2 & inc3. Nodes 1,
 2, and 5 are incremented by inc1. Nodes 6, 8, and 9 are incremented by
 inc2. Nodes 3, 4, and 7 are incremented by inc3.

 End input with a blank line.

Page of 178 186

 On input, created arrays are:
 .smthspr_el(n,10) -> node1 - node9, print code
 .smthspr_rtype -> set to 1 at present
 .bcid(10,#nodes) -> see command bcid for explanation

 For stiffness calculation, data points are expected in
 smthspr_in(#pts,numvar+2) -> X, Y coordinates, numvar variables. Each
 variable (column of values) is smoothed separately, except they must be
 defined at the same X,Y coordinates. The vector .smthspr_indx(#pts) is
 created with the element number each X,Y pair falls in. In this
 description, it is assumed that the variables are stresses, although they
 may be anything.

 For state calculation, X-Y coordinate and stresses at each nodal point
 are put in .smthspr_st(#nodes,numvar+2). The stresses are in the global
 coordinate system and stresses are stored in the same order as in
 smthspr_in. Nodal stresses are copied to .disp(#nodes,numvar).

 For response calculation, global coordinates and stresses are calculated
 for local coordinates in smthspr_lc(#pts,2). Nodal stresses are expected
 in .disp that are calculated in state. Hence, state must be called before
 response. Results are put in .smthspr_resp(#pts*n,numvar+2). See the
 explanation for state calculation for the order of stresses. If instead
 global coordinates are given in smthspr_gc(#pts,2), then results for
 those points are put in .smthspr_resp(#pts,numvar+2). The vector
 .smthspr_indx2(#pts) maps the data points to the element in which it
 falls.

 For state output, results in .smthspr_st are printed.

 For response output, results in .smthspr_resp are printed.

 node4 node7 node3
 X---------------------X---------------------X
 | |
 | |
 | |
 | |
 | |
 X node8 X X node6
 | node9 |
 | |
 | |
 | |
 | |
 X---------------------X---------------------X
 node1 node5 node2

 For the theory see Zienkiewicz, O.C. and Zhu, J.Z., "The Superconvergent
 Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery
 Technique," Intl. J. Num. Meth. Engrg., v. 33, 1992, pp. 1331-1364.

 See Also
 psmthspr presponse pstate

Page of 179 186

psmthspr
 Command Syntax
 psmthspr
 Print smthspr element data

 See Also
 smthspr

spring
 Nonlinear, elastic spring element

 ---------- OPTION 1 ----------
 Command Syntax
 spring m=? n=?
 m=mat e=Ko,Fyt,Fyc,Kpt,Kpc (1 record/material)
 n=nel type=type nodes=node1,node2 mat=mat [print=print] l=lx,ly,lz

 m is the number of different materials
 n is the number of elements

 mat is the material number
 Ko is the initial spring stiffness
 Fyt is the tensile yield strength
 Fyc is the compressive yield strength (typically negative)
 Kpt is the post-yield stiffness in tension
 Kpc is the post-yield stiffness in compression

 End input with a blank line.

 ---------- OPTION 2 ----------
 Command Syntax
 spring m=? n=?
 m=mat fv=d1,f1,d2,f2,etc (1 record/material)
 n=nel type=type nodes=node1,node2 mat=mat [print=print] l=lx,ly,lz

 m is the number of different materials
 n is the number of elements

 mat is the material number
 fv is a sequence of deformation,force (d,f) defining the
 deformation-force curve for the spring. The d1, d2, etc must be in
 ascending order. A minimum of 2 points must be specified, and a maximum
 of 10 points may be specified.

 End input with a blank line.

 -------- BOTH OPTIONS --------
 nel is the element number
 type is the specifier for spring type
 = 1 -> translational spring
 = 2 -> rotational spring
 node1 and node2 are the node numbers
 mat is the material number
 print .ne. 0 -> element printout suppressed
 lx, ly, lz are direction cosines that specify the element orientation

Page of 180 186

 Option 1 has a bilinear force-deformation relation (bilinear for each of
 the positive and negative deformation regimes. Option 2 is multilinear,
 with 10 datapoints for the whole spectrum (positive and negative
 spectrum). Option 1 is kept for backward compatibility. For option 2, if
 the calculated deformation is beyond the range specified, extrapolation
 is used.

 If the spring is connected to "ground", leave node2 blank. If node2 is
 specified, the spring can be used to resist relative translation or
 rotation of nodes, whether they are separated or co-located.

 For a translational spring, node2 is ignored (it is taken as "ground").
 For a rotational spring, both node1 and node2 are used, and hence can be
 used to resist relative rotation of two otherwise identical nodes.

 The direction cosines lx, ly, lz are with respect to the global
 coordinate system, and define the element orientation in the following
 sense. A grounded translational spring in the positive x-direction has a
 direction vector of 1, 0, 0. A grounded rotational spring with direction
 vector 1, 0, 0 means it resists rotation about the x-axis, with the
 right-hand-rule used to determine positive rotation. If the direction
 vector is not one of the global axes, the deformation of the element is
 calculated by taking the dot product of the displacement vector and the
 direction vector. If the spring connects two nodes, the direction is
 defined by the order of the nodes and the direction vector, not by the
 vector between the two nodes (which may be zero). Specifically, the
 relevant displacements are defined by the direction vector, and then the
 deformation is obtained by subtracting the displacement of node2 from
 node1. Note that this may be opposite from what might normally be
 expected. In both cases it can be imagined that node1 is at the head of
 the direction vector and node2, or ground, is at the tail.

 On input, created arrays are:
 .spring_mp(m,5) -> Ko, Fyt, Fyc, Kpt, Kpc
 or
 .spring_mp(m,21) -> d1,f1...d10,f10, number of actual points
 .spring_el(n,5) -> spring type, node1, node2, material, print
 .spring_dr(n,3) -> lx, ly, lz
 .spring_st(n,2) -> element force and deformation

 For state calculation, element forces are put in .spring_st.

 For response calculation, element does nothing.

 For state output, results in .spring_st are printed.

 For response output, no results are printed.

 See Also
 pspring pstate presponse

pspring
 Command Syntax
 pspring
 Print spring element data

Page of 181 186

 See Also
 spring

stiff2n
 Linear elastic 2-node stiffness element

 Command Syntax
 stiff2n n=?
 n=nel nodes=node1,node2 k=stiff__name [print=?]

 n is the number of elements

 nel is the element number
 node1 and node2 are the node numbers
 stiff_name is the name of the pre-defined 6x6 stiffness matrix
 print .ne. 0 -> element printout suppressed

 End input with a blank line.

 This element allows a 6x6 stiffness matrix to be used to connect two
 nodes. It may find most usefulness in connecting two nodes that are at
 identical locations. The "deformation" of the element is defined as the 6
 displacements of node2 minus the 6 displacements of node1. The element
 forces are then obtained by multiplying the deformation by the stiffness
 matrix. One use of the element is to specify a diagonal matrix, each
 diagonal with the spring stiffness connecting the two nodes.

 On input, created arrays are:
 .stiff2n_el(3,n) -> node1, node2, print code
 .stiff2n_k(32,n) -> names of the matrices (each up to 31 characters)
 .stiff2n_st(6,n) -> element force

 For state calculation, element forces are put in .stiff2n_st.

 For response calculation, element does nothing.

 For state output, results in .stiff2n_st are printed.

 For response output, no results are printed.

 See Also
 pstiff2n pstate presponse

pstiff2n
 Command Syntax
 pstiff2n
 Print 2-node stiffness element data

 See Also
 stiff2n

truss
 Two node linear truss element

 Command Syntax

Page of 182 186

 truss m=? n=? [-kg]
 m=matl e=emodulus a=area [mbar=density] (1 rec/matl)
 n=nel nodes=node1,node2 mat=mat [print=print] &
 [inc=inc] [gen=gen] [tension=tension] [Lo=length] &
 [ecc1=delta_x,delta_y,delta_z] [ecc2=delta_x,delta_y,delta_z]

 m is the number of different materials
 n is the number of elements
 -kg is a flag to include geometric stiffness

 matl is the material number
 emodulus is the modulus of elasticity
 area is the cross sectional area
 density is the mass/unit length

 nel is the element number
 node1 and node2 are the node numbers
 mat is the material number for the element
 print .ne. 0, element results not printed
 inc is the node increment used for generation
 gen is the number of elements to generate
 tension is the inital tension
 length is the unstretched length
 ecc1 are the offsets, in global coordinates, of the element start from
 node1
 ecc2 are the offsets, in global coordinates, of the element end from
 node2

 End input with a blank line.

 This element is identical to the ntruss element with option nl=1 (linear
 stiffness), except this element also uses linear kinematics to determine
 the axial force. The tension specified by tension= is only used for a
 geometric stiffness matrix. The value is not used subsequently. The
 length specified by Lo= is the unstretched length (corresponding to zero
 force). The default unstretched length is the initial distance between
 the two ends. If Lo is specified, then any value specified for tension is
 not used; rather the initial tension is calculated.

 On input, created arrays are:
 .truss_mp(m,4) -> modulus, area, density, unused
 .truss_el(4,n) -> node1, node2, material, print code
 .truss_len(n) -> unstretched length
 .truss_st(n) -> element force
 .truss_ecc(n) -> eccentricity code
 .truss_ecc2(6,n)-> eccentricities (delta_x,delta_y,delta_z)

 The element calculates a diagonal mass matrix only.
 For state calculation, element forces are put in .truss_st.
 For response calculation, element does nothing.
 For state output, the axial forces in .truss_st are printed.

 For response output, the element state is printed. If the unformatted
 write options on the presponse command are specified, the results are
 written to the file project_name.tr. The data is written: element #,
 axial force.

 See Also

Page of 183 186

 ntruss ptruss pstate presponse

ptruss
 Command Syntax
 ptruss
 Print truss element data

 See Also
 truss

Page of 184 186

2.8. Miscellaneous Commands

fortran_kind
 Command Syntax
 fortran_kind
 Prints the number of bytes for standard data types (Absoft compiler).

gauss_int
 Command Syntax
 gauss_int arg1 arg2 arg3 n=?
 arg1 = function values at gauss points - (n*nel,1) matrix
 arg2 = element lengths - (nel,1) matrix
 arg3 = integration result/element - (nel,1) matrix
 n = number of integration points (1 to 10)

 This function numerically evaluates the integral of an arbitrary function
 over a one-dimensional domain. For two-dimensional domains, see the finite
 element d2l3to9, which can be used as well to integrate an arbitrary
 function as a special case of "error estimation".

 See Also
 d2l3to9 fem_error

gauss_pts
 Command Syntax
 gauss_pts arg1 [arg2] [n=?,?,?]

 The array arg1 is created with the natural coordinates corresponding to
 n1 x n2 x n3 Gauss quadrature. The dimension of the space, and the
 number of columns of arg1, is specified by the number of parameters
 specified by n. That is, if only n1 is given, then arg1(n1) will be
 created; if n1 and n2 are specified, then arg1(n1*n2,2) will be
 created; etc. The maximum value of the n's is 10. If arg2 is given, the
 weights will be stored in it.

 See Also
 gauss_int

poly
 Command Syntax
 poly arg d=? [n=?] [option=?] c=?,?,?,...

 Evaluate a polynomial defined by the coefficients specified by c=. arg is
 an (npts,q) array, where npts is the number of points at which to
 evaluate the function. If option=0 (default), then the function only will
 be evaluated; if option=1, then the function and the first derivatives
 will be evaluated.

 One-Dimensional Polynomial (d=1):
 An arbitrary degree 1-D polynomial can be defined. The number of
 coefficients is specified by n= (degree = n-1). The coefficients are
 specified in the order 1, x, x^2, etc. The first column of arg contains
 the X-coordinates at which to evaluate the function. The function
 values will be placed in the second column. If requested, the first
 derivatives will be put in the third column.

Page of 185 186

 Two-Dimensional Polynomial (d=2):
 A maximum fifth degree polynomial (21 coefficients) can be specified.
 The coefficients are given in the order of Pascal's triangle, i.e., 1,
 x, y, x^2, xy, y^2, etc. The X,Y coordinates are expected in the first
 two columns of arg. The function values will be put in the third
 column. If requested, the first partial derivatives wrt X and Y will be
 put in the 4th and 5th columns of arg, respectively.

 In either case, if the coefficients have been defined previously (e.g.,
 by the input command) use the form c=~array_name, where array_name is the
 array with the coefficients.

tri_intpts
 Command Syntax
 tri_intpts arg1 [arg2] n=?

 The array arg1(n,3) is created with the area coordinates corresponding
 to the n integration points for a triangular domain. If arg2 is given,
 the weights are put in it. The number of points may be 1, 3, 4, 7, 9,
 or 12.

 See Also
 gauss_pts

userf
 Command Syntax
 userf f=?
 User-defined functions. f specifies which function. The arguments and
 parameters depend on the function. Help is only provided if the
 developer of the function provides a help routine. This option should
 only be used for prototyping and routines of short term use. Often,
 help is not available for such routines.

Page of 186 186

	Index of Commands
	Hydrodynamic Commands
	General Commands
	Database Commands
	Matrix Commands
	Mathematical Functions
	Finite Element Commands
	Finite Elements
	Miscellaneous Commands
	Command Reference
	Hydrodynamic Commands
	hyd_analysis
	hyd_analysis_response
	hyd_analysis_response_drag
	hyd_analysis_response_P
	hyd_assign_mooring
	hyd_body_check
	hyd_close_files
	hyd_convert_fea_mesh
	hyd_coordaxs
	hyd_coord_trans
	hyd_export_graphics
	hyd_export_graphics_th
	hyd_flex_modes
	hyd_genmodes
	hyd_irregular
	hyd_modal_pressure
	hyd_mooring_line
	phyd_mooring_line
	hyd_mooring_stiffness
	phyd_mooring_stiffness
	hyd_nodes
	phyd_nodes
	hyd_node_gen
	hyd_node_tolerance
	hyd_panel
	hyd_panel_rmap
	hyd_parameters
	hyd_postresponse
	hyd_postresponse_P
	hyd_rigid_modes
	hyd_rmass
	hyd_surf_elevation
	hyd_surf_nodes
	phyd_surf_nodes
	hyd_surf_node_gen
	hyd_surf_node_tolerance
	hyd_surf_panel
	phyd_surf_panel
	hyd_tf
	hyd_velocity
	phyd_velocity
	hyd_velocity_nodes
	phyd_velocity_nodes
	hyd_velocity_node_gen
	hyd_velocity_node_tolerance
	hyd_wave_dispersion
	hyd_wave_spectra
	phyd_wave_spectra
	General Commands
	break_loop
	date
	do
	filein
	flush
	help
	if
	index
	logfile
	login
	name?
	new_project
	palias
	quit
	read
	rename_file
	return
	rm_file
	savequit
	system_command
	time
	while
	write
	Database Commands
	clear
	dir
	ll
	memory
	mv
	readdb
	rm
	save
	Matrix Commands
	add
	arpack
	array3d_slice
	cp
	cpdg
	diag_mult
	dim_reduce
	eigval
	extract
	fft
	fft_helper
	ftopro
	gauss
	get_dim
	ident
	input
	input3d
	interpolate
	invert
	jacobi
	join
	max
	min
	mult
	mult_col
	mult_elem
	norm
	pmult
	print
	psolve
	psolve16
	ptoful
	ptosparse
	put
	putdg
	scale
	series
	series2d
	seti
	sort
	sparse_matrix_clean
	sparse_mult
	split
	sub
	subcol
	sumcol
	to_complex
	to_complex2
	to_int
	to_real
	to_real16
	to_vector
	tmult
	trans
	unsplit
	unwrap
	wrap
	xprint
	zero
	Mathematical Functions
	abs
	bessel_j or bessel_y
	conjugate
	epsilon
	erf
	exp
	gamma
	log
	log10
	pi
	power
	sqrt
	trig
	Finite Element Commands
	bcid
	body_frc2d
	check_diag
	conc_deck_loads
	consolidation
	cp_tables
	current_velocity
	dampers
	pdampers
	direct_th
	disp_cntl
	distr_deck_loads
	el_iso_matl
	elem_alias
	elem_grp
	eq_direction
	export_graphics
	fem_error
	form_G
	form_c
	form_k
	form_m
	form_lagrangeG
	imposed_displ
	initial_conditions
	load_summary
	lsolve
	mass
	mass_summary
	merge_nodes
	modal_th
	nodal_constraint
	nodal_disp
	nodal_pressure
	nodef
	nodes
	node_gen
	node_order
	node_str
	nsolve
	num_eqs
	pbcid
	pbody_frc2d
	pcurrentvelocity
	pdeck_loads
	pdisp
	peqns
	pimposed_displ
	pmass
	pndisp
	pndisp_th
	pnodef
	pnodes
	presponse
	pstate
	response
	rigid_modes
	state
	water_waves
	Finite Element Library
	beam3d
	pbeam3d
	biot1d234
	pbiot1d234
	biot2d3to9
	pbiot2d3to9
	cable
	pcable
	contact_spring
	pcontact_spring
	d1l234
	pd1l234
	d1l234v2
	pd1l234v2
	d2l3to9
	pd2l3to9
	d2ltri
	pd2ltri
	iFEM2D
	piFEM2D
	interface
	pinterface
	isomin6
	pisomin6
	min3s
	pmin3s
	min5s
	pmin5s
	min4t
	pmin4t
	min6
	pmin6
	nbeam2d
	pnbeam2d
	pbridge
	ppbridge
	ntruss
	pntruss
	smth1c
	psmth1c
	smth1l
	psmth1l
	smth1q
	psmth1q
	smth2l
	psmth2l
	smth2q
	psmth2q
	smthspr
	psmthspr
	spring
	pspring
	stiff2n
	pstiff2n
	truss
	ptruss
	Miscellaneous Commands
	fortran_kind
	gauss_int
	gauss_pts
	poly
	tri_intpts
	userf

